Chapter 11 Thermal Properties of matter ( द्रव्य के तापीय गुण)
अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर
प्रश्न 1.
निऑन तथा Co2 के त्रिक बिन्दु क्रमशः 24.57 K तथा 216.55 K हैं। इन तापों को सेल्सियस तथा फारेनहाइट मापक्रमों में व्यक्त कीजिए।
हल-
यहाँ TNe = 24.57 K तथा TCO2 = 216.55 K
परन्तु (t + 273.15) = T ⇒t = (T – 273.15)°C
∴ tNe = TNe – 273.15 = (24.57 – 279.15)°C = -248.58°C
tCo2 = TCo2 -273.15 = (216.55 – 273.15) = -56.6°C
प्रश्न 2.
दो परम ताप मापक्रमों A तथा B पर जल के त्रिक बिन्दु को 200A तथा 350B द्वारा परिभाषित किया गया है। TA तथा TB में क्या सम्बन्ध है?
हल-
दिया है कि दोनों परम ताप मापक्रम हैं अर्थात् दोनों का शून्य, परम शून्य ताप से सम्पाती है। प्रश्नानुसार प्रथम पैमाने पर परम शून्य से जल के त्रिक बिन्दु (ताप 273.15K) तक के ताप को 200 भागों में तथा दूसरे पैमाने पर 350 भागों में विभाजित किया गया है।
अतः 200A – 0A = 350B – 0B = 273.16 K – 0k
या 200A = 350B = 273.16 K
प्रश्न 3.
किसी तापमापी का ओम में विद्युत प्रतिरोध ताप के साथ निम्नलिखित सन्निकट नियम के अनुसार परिवर्तित होता है R = R0 [1+ α (T -T0)] यदि तापमापी का जल के त्रिक बिन्दु 273,16K पर प्रतिरोध 1016.Ω तथा लैड के सामान्य संगलन बिन्दु (600.5K) पर प्रतिरोध 165.5Ω है तो वह ताप ज्ञात कीजिए जिस पर तापमापी का प्रतिरोध 123.4Ω है।
हल-
यहाँ T1 = 273.16 K पर R1 = 101.6 Ω
T2 = 600.5 K पर R2 = 165.5 Ω
माना T3 =? पर R3 = 123.4 Ω
प्रश्न 4.
निम्नलिखित के उत्तर दीजिए :
(a) आधुनिक तापमिति में जल का त्रिक बिन्दु एक मानक नियत बिन्दु है, क्यों? हिम के गलनांक तथा जल के क्वथनांक को मानक नियत-बिन्दु मानने में (जैसा कि मूल सेल्सियस मापक्रम में किया गया था।) क्या दोष है?
(b) जैसा कि ऊपर वर्णन किया जा चुका है कि मूल सेल्सियस मापक्रम में दो नियत बिन्द थे। जिनको क्रमशः 0°C तथा 100°C संख्याएँ निर्धारित की गई थीं। परम ताप मापक्रम पर दो में से एक नियत बिन्दु जल का त्रिक बिन्दु लिया गया है जिसे केल्विन परम ताप मापक्रम पर संख्या 273.16 K निर्धारित की गई है। इस मापक्रम (केल्विन परम ताप)
पर अन्य नियत बिन्दु क्या है?
(c) परम ताप (केल्विन मापक्रम) T तथा सेल्सियस मापक्रम पर ताप t¢ में सम्बन्ध इस प्रकार है:
tc =T -273.15
इस सम्बन्ध में हमने 273.15 लिखा है 273.16 क्यों नहीं लिखा?
(d) उस.परमताप मापक्रम पर, जिसके एकांक अन्तराल का आमाप फारेनहाइट के एकांक अन्तराल की आमाप के बराबर है, जल के त्रिक बिन्दु का ताप क्या होगा?
उत्तर-
(a) क्योकि जल का त्रिक बिन्दु एक अद्वितीय बिन्दु है, जिसके संगत ताप 273.16 K अद्वितीय है, जबकि हिम का गलनांक तथा जल का क्वथनांक नियत नहीं है ये दाब परिवर्तित करने पर बदल जाते हैं।
(b) केल्विन मापक्रम पर अन्य नियत बिन्दु, परम शून्य ताप है जिस पर सभी गैसों का दाब शून्य हो जाता है।
(c) सेल्सियस पैमाने पर 0°C, सामान्य दाब पर बर्फ का गलनांक है जिसके संगत केल्विन ताप 273.15 K है न कि 273.15 K। इस प्रकार प्रत्येक परम ताप, संगत सेल्सियस ताप से 273.15 K ऊँचा है इसीलिए उक्त सम्बन्ध में 273.15 का प्रयोग किया गया है।
(d) हम जानते हैं कि 32°F = 273.15 K तथा 212°F = 273.15 K
∴ 212°F – 32°F = (373.15 – 273.15) K या 180°F = 100 K
प्रश्न 5.
दो आदर्श गैस तापमापियों A तथा B में क्रमशः ऑक्सीजन तथा हाइड्रोजन प्रयोग की गई है। इनके प्रेक्षण निम्नलिखित हैं:
(a) तापमापियों A तथा B के द्वारा लिए गए पाठ्यांकों के अनुसार सल्फर के सामान्य गलनांक के परमताप क्या हैं?
(b) आपके विचार से तापमापियों A तथा B के उत्तरों में थोड़ा अन्तर होने का क्या कारण है? (दोनों तापमापियों में कोई दोष नहीं है)। दो पाठ्यांकों के बीच की विसंगति को कम करने के लिए इस प्रयोग में और क्या प्रावधान आवश्यक हैं?
हल-
(a) तापमापी A के लिए।
(b) दोनों तापमापियों के पाठ्यांकों में अन्तर इसलिए है क्योंकि प्रयोग की गई गैसें आदर्श नहीं हैं। विसंगति को दूर करने के लिए पाठ्यांक कम दाब पर लेने चाहिए जिससे कि गैसें आदर्श गैस की भाँति व्यवहार करें।
प्रश्न 6.
किसी 1 m लम्बे स्टील के फीते का यथार्थ अंशांकन 27.0°C पर किया गया है। किसी तप्त दिन जब ताप 45°C था तब इस फीते से किसी स्टील की छड़ की लम्बाई 63.0 cm मापी गई। उस दिन स्टील की छड़ की वास्तविक लम्बाई क्या थी? जिस दिन ताप 27.0°C होगा उस दिन इसी छड़ की लम्बाई क्या होगी? स्टील का रेखीय प्रसार गुणांक = 1.20 x 10-5 K-1.
हल-
जब ताप 27°C से बढ़कर 45°C हो जाती है तो ताप में वृद्धि ΔT = (45-27)°C ≡ 18K; माना 27°C पर अंशांकित स्टील के फीते पर इस ताप वृद्धि के कारण इसकी l1 = 1 सेमी लम्बाई बढ़कर l2, हो जाती है तो
अतः यदि स्टील का फीता 45°C पर 1 सेमी मापता है तो छड़ की वास्तविक लम्बाई 1.000216 सेमी होगी। परन्तु यहाँ 45°C परं यह 63 सेमी मापता है। अत: स्टील छड़ की वास्तविक लम्बाई
= 63 x 1.000216 सेमी = 63.0136 सेमी
जिस दिन ताप 27°C होगा उस दिन स्टील फीते पर 1 सेमी चिह्न की वास्तविक लम्बाई 1 सेमी ही होगी चूंकि यह फीता इसी ताप पर अंशांकित किया गया है। अत: 27°C पर छड़ की वास्तविक लम्बाई = 63.0 x 1 सेमी = 63.0 सेमी ही होगी।’
प्रश्न 7.
किसी बड़े स्टील के पहिए को उसी पदार्थ की किसी धुरी पर ठीक बैठाना है। 27°C पर धुरी का बाहरी व्यास 8.70 cm तथा पहिए के केन्द्रीय छिद्र का व्यास 8.69 cm है। सूखी बर्फ (ठोस Co2) द्वारा धुरी को ठण्डा किया गया है। धुरी के किस ताप पर पहिया धुरी पर चढ़ेगा? यह मानिए कि आवश्यक ताप परिसर में स्टील का रैखिक प्रसार गुणांक नियत रहता है। αस्टील = 1.20 x 10-5 K-1.
हल-
T1 = 27°C = (27 + 273) K = 300K पर धुरी का व्यास D1 = 8.70 सेमी।
माना धुरी को T2K तक ठण्डा किया गया है ताकि इसका व्यास सिकुड़कर पहिए के केन्द्रीय छिद्र के व्यास D2 = 8.69 सेमी के बराबर हो जाये जिससे कि पहिया धुरी पर चढ़ सके।
प्रश्न 8.
ताँबे की चादर में एक छिद्र किया गया है। 27.0°C पर छिद्र का व्यास 4.24 cm है। इस धातु की चादर को 227°C तक तप्त करने पर छिद्र के व्यास में क्या परिवर्तन होगा? ताँबे का रेखीय प्रसार गुणांक = 1.70 x 10-5K-1.
हल-
प्रश्न 9.
27°C पर 1.8 cm लम्बे किसी ताँबे के तार को दो दृढ़ टेकों के बीच अल्प तनाव रखकर थोड़ा कसा गया है। यदि तार को -39°C ताप तक शीतित करें तो तार में कितना तनाव उत्पन्न हो जाएगा? तार का व्यास 2.0 mm है। पीतल को रेखीय प्रसार गुणांक = 2.0 x 10-5 k-1, पीतल का यंग प्रत्यास्थता गुणांक = 0.91 x 1011Pa,
हल-
दिया है : T1 = 27°C, T2 = -39°C,
ताप परिवर्तन ∆T = [27 -(-39)] = 66°C या 66 K, तार की लम्बाई L = 1.8 cm
तार का व्यास 2r = 2.0 mm
∴त्रिज्या r = 1.0 x 10-3m
प्रश्न 10.
50 cm लम्बी तथा 3.0 mm व्यास की किसी पीतल की छड़ को उसी लम्बाई तथा व्यास की किसी स्टील की छड़ से जोड़ा गया है। यदि ये मूल लम्बाइयाँ 40°C पर हैं तो 250°C पर संयुक्त छड़ की लम्बाई में क्या परिवर्तन होगा? क्या सन्धि पर कोई तापीय प्रतिबल उत्पन्न होगा? छड़ के सिरों को प्रसार के लिए मुक्त रखा गया है। (पीतल तथा स्टील के रेखीय प्रसार गुणांक क्रमशः 2.0 x 10-5 k-1 तथा 1.2 x 10-5 x k-1 हैं।)
हल-
प्रत्येक छड़ का ताप T1 = 40°C पर लम्बाई L1 = 50 सेमी
संयुक्त छड़ का अन्तिम ताप T2 = 250°C
अतः प्रत्येक छड़ के ताप में वृद्धि
∆T = T2 – T1 = (250 -40)°C = 210°C = 210K
(∵ सेल्सियस तथा केल्विन पैमाने पर 1 डिग्री को आकार बराबर होता है)
∵ पीतल की छड़ की लम्बाई में वृद्धि
(∆L)पीतल =L1 • α.पीतल x ∆T
= 50 सेमी x2.0 x 10-5 K-1 x 210K
= 0.21
सेमी स्टील की छड़ की लम्बाई में वृद्धि (∆L)स्टील = L1 x 0.स्टील x ∆T
= 50 सेमी x 1.2 x 10-5 K-1 x 210K
= 0.126 सेमी ≈ 0.13 सेमी
∴ संयुक्त छड़ की लम्बाई में वृद्धि
= (∆L)पीतल + (∆L)स्टील ।
= 0.21 सेमी + 0.13 सेमी
= 0.34 सेमी
चूँकि छड़ों के सिरों को प्रसार के लिए मुक्त रखा गया है, अत: संधि पर कोई तापीय प्रतिबल उत्पन्न नहीं होगा।
प्रश्न 11.
ग्लिसरीन का आयतन प्रसार गुणांक 49 x 10-5 K-1 है। ताप में 30°C की वृद्धि होने पर इसके घनत्व में क्या आंशिक परिवर्तन होगा?
हल-
प्रश्न 12.
8.0 kg द्रव्यमान के किसी ऐलुमिनियम के छोटे ब्लॉक में छिद्र करने के लिए किसी 10 kw की बरमी का उपयोग किया गया है। 2.5 मिनट में ब्लॉक के ताप में कितनी वृद्धि हो जाएगी? यह मानिए कि 50% शक्ति तो स्वयं बरमी को गर्म करने में खर्च हो जाती है अथवा परिवेश में लुप्त हो जाती है। ऐलुमिनियम की विशिष्ट ऊष्मा धारिता = 0.91 J g-1K-1 है।
हल-
बरमी की शक्ति P = 10 किलोवाट = 104 वाट = 104 जूल/सेकण्ड
समय t = 2.5 मिनट = 2.5 x 60 सेकण्ड = 150 सेकण्ड
∴ बरमी द्वारा प्रयुक्त ऊर्जा w = P x T = (104 जूल/सेकण्ड) x 150 सेकण्ड
= 1.5 x 106 जूल।
m = 8.0 किग्रा के ऐल्युमीनियम के छोटे ब्लॉक द्वारा बरमी की प्रयुक्त ऊर्जा से ली गयी ऊर्जा
प्रश्न 13.
2.5 kg द्रव्यमान के ताँबे के गुटके को किसी भट्टी में 500°C तक तप्त करने के पश्चात् किसी बड़े हिम-ब्लॉक पर रख दिया जाता है। गलित हो सकने वाली हिम की अधिकतम मात्रा क्या है? ताँबे की विशिष्ट ऊष्मा धारिता = 0.39 J g-1 K-1; बर्फ की संगलन ऊष्मा= 335 Jg-1.
हल-
यहाँ गुटके का द्रव्यमान m = 2.5
किग्रा गुटके की विशिष्ट ऊष्माधारिता s = 0.39 जूल-ग्राम-1-K-1
= 0.39 x 103 जूल-किग्रा-1°C-1
गुटके का प्रारम्भिक ताप T1 = 500°C,
अन्तिम ताप T2 = बर्फ का ताप = 0°C
∴ गुटके के ताप में कमी ∆T = (T1 – T2) = 500°C
माना गलित होने वाले बड़े हिम ब्लॉक की मात्रा = mबर्फ
बर्फ के संगलन की ऊष्मा L = 335 जूल-ग्राम-1 = 335 x 103 जूल-किग्रा-1
ऊष्मामिति के सिद्धान्त से,
गुटके द्वारा दी गयी ऊष्मा = बर्फ द्वारा गलने में ली गयी ऊष्मा
प्रश्न 14.
किसी धातु की विशिष्ट ऊष्मा धारिता के प्रयोग में 0.20 kg के धातु के गुटके को 150°C पर तप्त करके, किसी ताँबे के ऊष्मामापी (जल तुल्यांक = 0.025 kg) जिसमें 27°C का 150 cm3 जल भरा है, में गिराया जाता है। अन्तिम ताप 40°c है। धातु की विशिष्ट ऊष्मा धारिता परिकलित कीजिए। यदि परिवेश में क्षय ऊष्मा उपेक्षणीय न मानकर परिकलन किया जाता है, तब क्या आपका उत्तर धातु की विशिष्ट ऊष्मा धारिता के वास्तविक मान से अधिक मान दर्शाएगा अथवा कम?
हल-
धातु के गुटके का द्रव्यमान m = 0.20 किग्री
माना इसकी विशिष्ट ऊष्मा = s
जल तथा ऊष्मामापी की ताप T2 = 27°C
मिश्रण को प्रारम्भिक ताप T1 = 150°C
मिश्रण का अन्तिम ताप T = 40°C
ऊष्मामापी का तुल्यांक W = Ms = 0.025 किग्रा ।
जल का आयतन = 150 सेमी3 = 150 x 10-6 मी3
जल का घनत्व = 103 किग्रा/मी3
∴ जले का द्रव्यमान M = आयतन x घनत्व
= 150 x 10-6 मी3 x 103 किग्रा/मी3 = 0.150 किग्रा
धातु के गुटके द्वारा दी गयी ऊष्मा = m x s x (T1 – T)
= 0.20 x s x (150-40) = 0.20 x 110 x s
(ऊष्मामापी + जल) द्वारा ली गयी ऊष्मा =(mजल x Sजल + W)x (T – T2)
=(0.150 x 1+ 0.025) x (40-27)
=(0.175 x 13) किलो कैलोरी
कैलोरीमिति के सिद्धान्त से,
दी गयी ऊष्मा = ली गयी ऊष्मा
∴ 0.20 x 110 x 5 = 0.175 x 13
[latex s=2]s=\left( \frac { 0.175\times 123 }{ 0.20\times 110 } \right) [/latex] किलो कैलोरी/किग्रा-°C
= 0.103 किलो कैलोरी/किग्रा-K
प्रश्न 15.
कुछ सामान्य गैसों के कक्ष ताप पर मोलर विशिष्ट ऊष्मा धारिताओं के प्रेक्षण नीचे दिए गए हैं।
इन गैसों की मापी गई मोलर विशिष्ट ऊष्मा धारिताएँ एक परमाणुक गैसों की मोलर विशिष्ट ऊष्मा धारिताओं से सुस्पष्ट रूप से भिन्न हैं। प्रतीकात्मक रूप में किसी एक परमाणुक गैस की मोलर विशिष्ट ऊष्मा धारिता 2.92 cal/mol K होती है। इस अन्तर का स्पष्टीकरण कीजिए। क्लोरीन के लिए कुछ अधिक मान (शेष की अपेक्षा) होने से आप क्या निष्कर्ष निकालते हैं?
उत्तर-
एक परमाणुक गैसों के अणुओं में केवल स्थानान्तरीय गतिज ऊर्जा होती है जबकि द्विपरमाणुक गैसों के अणुओं में स्थानान्तरीय गतिज ऊर्जा के अतिरिक्त घूर्णी गतिज ऊर्जा भी होती है। ऐसा इसलिए सम्भव है क्योंकि द्विपरमाणुक गैसों के अणु अन्तराणविक अक्ष के लम्बवत् दो अक्षों के परितः घूर्णन भी कर सकते हैं। जब किसी गैस को ऊष्मा दी जाती है तो यह ऊष्मा अणुओं की सभी प्रकार की ऊर्जाओं में समान वृद्धियाँ करती है। अब चूँकि द्विपरमाणुक गैसों के अणुओं की ऊर्जा के प्रकार अधिक होते हैं इसीलिए इनकी मोलर विशिष्ट ऊष्मा धारिताएँ भी अधिक होती हैं। क्लोरीन की मोलर विशिष्ट ऊष्मा धारिता की अधिक होना यह प्रदर्शित करता है कि इसके अणु स्थानान्तरीय तथा घूर्णी गतिज ऊर्जा के अतिरिक्त कम्पनिक गतिज ऊर्जा भी रखते हैं।
प्रश्न 16.
CO2 के p-T प्रावस्था आरेख पर आधारित निम्नलिखित प्रश्नों के उत्तर दीजिए
(a) किस ताप व दाब पर co2 की ठोस, द्रव तथा वाष्प प्रावस्थाएँ साम्य में सहवर्ती हो सकती
(b) co2 के गलनांक तथा क्वथनांक पर दाब में कमी का क्या प्रभाव पड़ता है?
(c) co2 के लिए क्रान्तिक ताप तथा दाब क्या हैं? इनको क्या महत्त्व है?
(d) (a) – 70°C ताप व 1 atm दाब, (b) – 60°C ताप व 10 atm दाब, (c) 15°C ताप व 56 atm दाब पर co2 ठोस, द्रव अथवा गैस में किस अवस्था में होती है?
उत्तर-
(a) – 56.6°C ताप तथा 5.11 atm दाब पर (त्रिक बिन्दु के संगत)।
(b) दाब में कमी होने पर दोनों घटते हैं।
(c) बिन्दु ८ के संगत, क्रान्तिक ताप = 31.1°C तथा क्रान्तिक दाब = 73.0 atm इससे उच्च ताप पर CO2 द्रवित नहीं होगी, चाहे उस पर कितना भी अधिक दाब आरोपित किया जाए।
(d) (a) वाष्प अर्थात् गैसीय अवस्था में, (b) ठोस अवस्था में, (c) द्रव अवस्था में।
प्रश्न 17.
CO2 के p-T प्रावस्था आरेख पर आधारित निम्नलिखित प्रश्नों के उत्तर दीजिए
(a) 1 atm दाब तथा -60°C ताप पर CO2 का समतापी सम्पीडन किया जाता है? क्या यह द्रव प्रावस्था में जाएगी?
(b) क्या होता है जब 4 atm दाब पर CO2 का दाब नियत रखकर कक्ष ताप पर शीतन किया जाता है।
(c) 10 atm दाब तथा -65°C ताप पर किसी दिए गए द्रव्यमान की ठोस CO2 को दाब नियत रखकर कक्ष ताप तक तप्त करते समय होने वाले गुणात्मक परिवर्तनों का वर्णन कीजिए।
(d) CO2 को 70°C तक तप्त तथा समतापी सम्पीडित किया जाता है। आप प्रेक्षण के लिए इसके किन गुणों में अन्तर की अपेक्षा करते हैं?
उत्तर-
(a) समतापी सम्पीडन का अर्थ है कि गैस को -60°C ताप पर दाब अक्ष के समान्तर ऊपर को ले जाया जाता है। इसके लिए हम -60°C ताप पर दाब अक्ष के समान्तर रेखा खींचते हैं। हम देख सकते हैं। कि यह रेखा गैसीय क्षेत्र से सीधे ठोस क्षेत्र (UPBoardSolutions.com) में प्रवेश कर जाती है और द्रव क्षेत्र से नहीं गुजरती। | इसका अर्थ यह है कि गैस बिना द्रवित हुए ठोस में बदल जाएगी।
(b) इस बार हम 4 atm दाब पर ताप अक्ष के समान्तर रेखा खींचते हैं। हम देखते हैं कि यह रेखा वाष्प क्षेत्र से सीधे ठोस क्षेत्र में प्रवेश कर जाती है। इसका अर्थ है गैस, द्रव अवस्था में आए बिना ही ठोस अवस्था में संघनित हो जाएगी।
(c) इस बार हम 10 atm दाब तथा -65°C ताप से प्रारम्भ करके ताप अक्ष के समान्तर रेखा खींचते हैं। यह रेखा ठोस क्षेत्र से द्रव क्षेत्र तथा द्रव क्षेत्र से वाष्प क्षेत्र में प्रवेश करेगी।
इसका अर्थ यह है कि 10 atm दाब तथा -65°C ताप पर गैस ठोस अवस्था में होगी। गर्म किए जाने पर धीरे-धीरे यह द्रव अवस्था में आ जाएगी तथा और गर्म किए जाने पर गैसीय अवस्था में आ जाएगी। द्रव्य के तापीय गुण 309
(d)∵70°C ताप गैस के क्रान्तिक ताप से अधिक है; अत: इसे समतापी सम्पीडन द्वारा द्रवित नहीं किया जा सकता; अत: चिर स्थायी गैसों की भाँति दाब बढ़ाते जाने पर इसका आयतन कम होता जाएगा।
प्रश्न 18.
101°F ताप ज्वर से पीड़ित किसी बच्चे को एन्टीपायरिन (ज्वर कम करने की दवा) दी गई जिसके कारण उसके शरीर से पसीने के वाष्पन की दर में वृद्धि हो गई। यदि 20 मिनट में ज्वर 98°F तक गिर जाता है तो दवा द्वारा होने वाले अतिरिक्त वाष्पन की औसत दर क्या है? यह मानिए कि ऊष्मा ह्रास का एकमात्र उपाय वाष्पन ही है। बच्चे का द्रव्यमान 30 kg है। मानव शरीर की विशिष्ट ऊष्मा धारिता जल की विशिष्ट ऊष्मा धारिता के लगभग बराबर है तथा उस ताप पर जल के वाष्पन की गुप्त ऊष्मा 580 cal g-1 है।
हल-
बच्चे का द्रव्यमान M = 30 किग्रा
उसके ताप में कमी
प्रश्न 19.
थर्मोकोल का बना ‘हिम बॉक्स विशेषकर गर्मियों में कम मात्रा के पके भोजन के भण्डारण का सस्ता तथा दक्ष साधन है। 30 cm भुजा के किसी हिम बॉक्स की मोटाई 5.0 cm है। यदि इस बॉक्स में 4.0 kg हिम रखा है तो 6h के पश्चात बचे हिम की मात्रा का आकलन कीजिए। बाहरी ताप 45°C है तथा थर्मोकोल की. ऊष्मा चालकता 0.01 Js-1m-1k-1 है। (हिम की संगलन ऊष्मा = 335 x 103Jkg-1)
हल-
हिम बॉक्स की भुजा a = 30 cm = 0.3 m, बॉक्स की मोटाई l = 5.0 cm = 0.05 m
बाहरी ताप T1 = 45°C, अन्दर (बर्फ) का ताप T2 = 0°C
समय t = 6h = 6 x 60 x 60 s , बर्फ का द्रव्यमान = 4.0 kg
माना ईसे ऊष्मा को प्राप्त करके m द्रव्यमान बर्फ पिघल जाती है। इस प्रक्रिया में बर्फ द्वारा अवशोषित ऊष्मा
प्रश्न 20.
किसी पीतल के बॉयलर की पेंदी का क्षेत्रफल 0.15 m2 तथा मोटाई 1.0 cm है। किसी गैस स्टोव पर रखने पर इसमें 6.0 kg/min की दर से जल उबलता है। बॉयलर के सम्पर्क की ज्वाला के भाग का ताप आकलित कीजिए। पीतल की ऊष्मा चालकता = 109 Js-1m-1K-1; जल की वाष्पन ऊष्मा = 2256 x 103 Jkg-1है।
हल-
पेंदी का क्षेत्रफल A = 0.15 m2, मोटाई l = 1.0 cm = 0.01 m,
पीतल की ऊष्मा चालकता K = 109 Js-1m-1K-1,
जल की वाष्पन ऊष्मा L = 2256 x 103 J kg-1,
जल उबलने की दर = 6.0 kg/min
मानी ज्वाला का ताप T1 है जबकि बॉयलर का आन्तरिक ताप T2 = 100°C
t = 1 min या 60 s में बॉयलर के भीतर प्रविष्ट होने वाली ऊष्मा
प्रश्न 21. स्पष्ट कीजिए कि क्यों
(a) अधिक परावर्तकता वाले पिण्ड अल्प उत्सर्जक होते हैं।
(b) कंपकंपी वाले दिन लकड़ी की ट्रे की अपेक्षा पीतल का गिलास कहीं अधिक शीतल प्रतीत होता है।
(c) कोई प्रकाशिक उत्तापमापी (उच्च तापों को मापने की युक्ति), जिसका अंशांकन किसी आदर्श कृष्णिका के विकिरणों के लिए किया गया है, खुले में रखे किसी लाल तप्त लोहे के टुकड़े का ताप काफी कम मापता है, परन्तु जब उसी लोहे के टुकड़े को भट्टी में रखते हैं। तो वह ताप का सही मान मापता है?
(d) बिना वातावरण के पृथ्वी अशरणीय शीतल हो जाएगी।
(e) भाप के परिचालन पर आधारित तापन निकाय तप्त जल के परिचालन पर आधारित निकायों की अपेक्षा भवनों को उष्ण बनाने में अधिक दक्ष होते हैं।
उत्तर-
(a) हम जानते हैं कि उच्च परावर्तकता वाले पिण्ड अपने ऊपर गिरने वाले अधिकांश विकिरण को परावर्तित कर देते हैं अर्थात् वे अल्प अवशोषक होते हैं, इसीलिए वे अल्प उत्सर्जक भी होते हैं। (b) लकड़ी की ट्रे ऊष्मा की कुचालक होती है जबकि पीतल का गिलास ऊष्मा का सुचालक है। यद्यपि कंपकंपी वाले दिन दोनों ही समान ताप पर होंगे, परन्तु हाथ से छूने पर गिलास हमारे हाथ से तेजी व्य के तापीय गुण 311 से ऊष्मा लेता है जबकि लकड़ी की ट्रे बहुत कम ऊष्मा लेती है। यही कारण है कि पीतल का गिलास लकड़ी की ट्रे की तुलना में अधिक ठण्डा लगता है। | (c) इसका कारण यह है कि खुले में रखे तप्त लोहे का गोला तेजी से ऊष्मा खोता है और ऊष्मा धारिता कम होने के कारण तेजी से ठण्डा होता जाता है, इससे उत्तापमापी को पर्याप्त विकिरण ऊर्जा लगातार नहीं मिल पाती। इसके विपरीत भट्ठी में रखने पर गोले का ताप स्थिर बना रहता है और वह नियत दर से विकिरण उत्सर्जित करता रहता है।
(d) हम जानते हैं कि वायु ऊष्मा की कुचालक होती है, यही कारण है कि पृथ्वी के चारों ओर का वायुमण्डल एक कम्बल की भाँति कार्य करता है और पृथ्वी से उत्सर्जित होने वाले ऊष्मीय विकिरणों को वापस पृथ्वी की ओर परावर्तित कर देता है। वायुमण्डल की अनुपस्थिति में पृथ्वी से उत्सर्जित होने वाले ऊष्मीय विकिरण सीधे सुदूर अन्तरिक्ष में चले जाते तथा पृथ्वी अशरणीय शीतल हो जाती।
(e). हम जानते हैं कि 1g जलवाष्प, 100°C के 1g जल की तुलना में 540 cal अतिरिक्त ऊष्मा रखती है। इससे स्पष्ट है कि जलवाष्प आधारित तापन निकाय, तप्त जल आधारित तापन निकाय से अधिक दक्ष हैं।
प्रश्न 22.
किसी पिण्ड का ताप 5 min में 80°C से 50°C हो जाता है। यदि परिवेश का ताप 20°c है। तो उस समय को परिकलन कीजिए जिसमें उसका ताप 60°C से 30°C हो जाएगा।
हल-
80°C तथा 50°C का माध्य 65°C है इसका परिवेश ताप से अन्तर (65 -20) = 45°C है।
परीक्षोपयोगी प्रश्नोत्तर
बहुविकल्पीय प्रश्न
प्रश्न 1.
ताप जो सेल्सियस और फारेनहाइट पैमाने पर समान पाठ देता है, वह है।
(i) 0°
(ii) 30°
(iii) 40°
(iv) 50°
उत्तर-
(iii) 40°
प्रश्न 2. केल्विन पैमाने पर पानी का हिमांक होता है।
(i) 0 K
(ii) 100 K
(iii) 273 K
(iv) 373 K
उत्तर-
(iii) 273 K
प्रश्न 3. 0°, केल्विन पैमाने का मान होता है।
(i) 272 K
(ii) 273 K
(iii) 274 K
(iv) 275 K
उत्तर-
(ii) 273 K
प्रश्न 4. सेल्सियस तथा फारेनहाइट पैमाने में सम्बन्ध है।
उत्तर-
(i) °C = [latex]\frac { 5 }{ 9 }[/latex](°F – 32)
प्रश्न 5. केल्विन पैमाने पर पानी का क्वथनांक होता है।
(i) 373 K
(ii) 273 K
(iii) 100 K
(iv) 230 K
उत्तर-
(i) 373 K
प्रश्न 6.
एक आदर्श गैस थर्मामीटर द्वारा मापा गया ताप व्यंजक [latex s=2]\theta =\frac { { P }_{ t }-{ P }_{ 0 } }{ { P }_{ 100 }-{ P }_{ 0 } } \times 100[/latex] द्वारा दिया जाता है, तो ताप 0°है।
(i) केल्विन
(ii) फारेनहाइट
(iii) रयूमर
(iv) सेल्सियस
उत्तर-
(iv) सेल्सियस
प्रश्न 7. आदर्श गैस के रुद्रोष्म प्रक्रम में ताप T तथा दाब P में सम्बन्थ है
उत्तर-
(i) [latex s=2]\frac { { T }^{ \gamma } }{ { P }^{ ^{ \gamma }-1 } } [/latex] नियतांक
प्रश्न 8.
किसी ताप पर आदर्श गैस के अणुओं में होती है।
(i) केवल गतिज ऊर्जा ।
(ii) केवल स्थितिज ऊर्जा
(iii) दोनों
(iv) इनमें से कोई नहीं ।
उत्तर-
(i) केवल गतिज ऊर्जा
प्रश्न 9.
आदर्श गैस के लिए γ = Cp/Cυ अतः
उत्तर-
(ii) [latex s=2]\gamma =1+\frac { R }{ { C }_{ \upsilon } } [/latex]
प्रश्न 10.
हीलियम गैस के लिए Cy तथा C, का अनुपात है
(i) 5/7
(ii) 7/5
(iii) 3/5
(iv) 5/3
उत्तर-(iv) 5/3
प्रश्न 11.
एक मोल गैस की 7 ताप पर आन्तरिक ऊर्जा है।
(i) Cp x T
(ii) Cυ x T
(iii) (Cp – Cυ)xT
(iv)Cp/Cυ x T
उत्तर-
(iii) (Cp – Cυ)xT
प्रश्न 12.
किसी पदार्थ का क्षेत्रीय प्रसार गुणांक 0.0002 प्रति °c है। उसका रेखीय प्रसार गुणांक होगा !
(i) 0.0001 प्रति °C
(ii) 0.0002 प्रति °C
(iii) 0.0004 प्रति °C
(iv) 0.0003 प्रति °C
उत्तर-
(i) 0.0001 प्रति °C
प्रश्न 13.
द्रव के वास्तविक एवं आभासी प्रसार गुणांकों में सम्बन्ध प्रदर्शित करने का सही व्यंजक है
(i) γr = γa + γg
(ii) γg = γr + γa
(iii) γa = γr + γg
(iv) γr = γa – γg
उत्तर-
(i) γr = γa + γg
प्रश्न 14.
वास्तविक प्रसार गुणांक का सूत्र होता है।
उत्तर-
(i) द्रव का वास्तविक प्रसार गुणांक = [latex s=2]\frac { { \left( \Delta V \right) }_{ r } }{ V\times \Delta \theta } [/latex]
प्रश्न 15.
पानी का घनत्व अधिकतम होगा, यदि उसका ताप है।
(i) 0°C
(ii) 4°C
(iii) 32°C
(iv) 100°C
उत्तर-
(ii) 4°C
प्रश्न 16.
ठण्डे देशों में झील के पानी के जम जाने पर भी मछलियाँ जीवित रहती हैं, क्योंकि
(i) वे अधिक ठण्ड सहन कर सकती हैं।
(ii) वे अपने अन्दर आवश्यक ऑक्सीजन संचय करती हैं।
(iii) झील के पानी की जमी हुई सतह के नीचे पानी द्रव के रूप में 4°C पर रहता है।
(iv) उपर्युक्त में से कोई नहीं
उत्तर-
(iii) झील के पानी की जमी हुई सतह के नीचे पानी द्रव के रूप में 4°C पर रहता है।
प्रश्न 17.विशिष्ट ऊष्मा का SI मात्रक होता है।
(i) जूल/किग्रा-°C
(ii) जूल/किग्रा-°F
(iii) जूल ग्राम-°C
(iv) जूल/किग्रा
उत्तर-
(i) जूल/किग्रा-°C
प्रश्न 18.
मोलर विशिष्ट ऊष्मा का सूत्र होता है।
उत्तर-
(ii) मोलर विशिष्ट ऊष्मा [latex s=2]\frac { 1 }{ \mu } .\frac { \Delta Q }{ \Delta T } [/latex]
प्रश्न 19.
मोटर गाड़ी के इंजन को ठण्डा करने के लिए जल प्रयोग में लाया जाता है, क्योंकि
(i) जल की विशिष्ट ऊष्माधारिता उच्च होती है।
(ii) यह निम्न ताप पर उपलब्ध है।
(iii) यह निम्न घनत्व पर होता है।
(iv) यह आसानी से उपलब्ध है।
उत्तर-
(i) जल की विशिष्ट ऊष्माधारिता उच्च होती है।
प्रश्न 20.
0°C पर स्थित पानी की कुछ मात्रा में उसी ताप पर स्थित बर्फ की कुछ मात्रा मिला दी। जाती है। अब ताप |
(i) घटेगा।
(ii) बढ़ेगा।
(iii) वही रहेगा
(iv) इनमें से कोई नहीं
उत्तर-
(iii) वही रहेगा
प्रश्न 21.
जल की विशिष्ट ऊष्मा 1 कैलोरी/ग्राम °C है। इसका मान जूल/किग्रा °C में होगा
(i) [latex ]\frac { 1 }{ 4.2\times { 10 }^{ 3 } } [/latex]
(ii) 4.2×103
(iii) 8.4×103
(iv) 4.1×103
उत्तर-
(i) 4.2×103
प्रश्न 22.
भाप की विशिष्ट गुप्त ऊष्मा का मान है।
(i) 80 किलो कैलोरी/किग्रा
(ii) 536 किलो कैलोरी/किग्रा
(iii) 4.2 किलो कैलोरी/किग्रा
(iv) इनमें से कोई नहीं
उत्तर-
(ii) 536 किलो कैलोरी/किग्रा
प्रश्न 23.
किसी पदार्थ को गुप्त ऊष्मा देने पर
(i) गतिज ऊर्जा बढ़ती है।
(ii) स्थितिज ऊर्जा बढ़ती है।
(iii) स्थितिज ऊर्जा कम हो जाती है।
(iv) दोनों प्रकार की ऊर्जाएँ अप्रभावित रहती हैं।
उत्तर-
(ii) स्थितिज ऊर्जा बढ़ती है।
अतिलघु उत्तरीय प्रश्न :
प्रश्न 1.
सेल्सियस पैमाने के उच्चतम बिन्दु का मान क्या होता है?
उत्तर-
सेल्सियस पैमाने के उच्चतम बिन्दु का मान 100°C होता है।
प्रश्न 2.
त्रिक बिन्दु के संगत दाब तथा ताप के मान बताइए।
उत्तर-
दाब 4.58 मिमी तथा ताप 0.01°C.
प्रश्न 3.
तापमापी में जल का उपयोग क्यों नहीं किया जाता? तीन कारण लिखिए।
उत्तर-
(i) जल पारदर्शी है,
(ii) काँच से चिपकता है तथा
(iii) इसका ऊष्मीय प्रसार असमान है।
प्रश्न 4.
स्थिर-आयतन वायु तापमापी का सिद्धान्त बताइए।
उत्तर-
सिद्धान्त किसी गैस का स्थिर आयतन पर दाब गैस के ताप के साथ बदलता है। यदि गैस के एक निश्चित द्रव्यमान के, स्थिर आयतन पर, 0°C, 100°C तथा एक अज्ञात ताप t पर दाब क्रमशः P0, P100 तथा Pt हों तो
प्रश्न 5.
प्रतिरोध तापमापी में प्लेटिनम का तार क्यों प्रयुक्त किया जाता है?
उत्तर-
प्लेटिनम के तार का प्रतिरोध ताप के बढ़ने पर (200°C से 1200°C तक) एकसमान रूप से बढ़ता है, गलनांक ऊँचा होता है तथा यह अन्य पदार्थों से रासायनिक क्रिया नहीं करता।
प्रश्न 6.
समीकरण Rt = R0(1 + αt) में R प्रतिरोध तथाt ताप है। α का मात्रक बताइए।
उत्तर-
प्रति°C
प्रश्न 7. मानव शरीर का सामान्य ताप क्या होता है?
उत्तर-
मानव शरीर का सामान्य ताप 37°C (98.4°F) होता है।
प्रश्न 8.
सार्वत्रिक गैस नियतांक R का मान क्या होता है?
उत्तर-
सार्वत्रिकं गैस नियतांक R = 8.31 जूल-1 मोल-1 केल्विन-1
प्रश्न 9.
एक परमाणुक गैस के लिए Cυ, का मान कितना होता है?
उत्तर-
3/2R.
प्रश्न 10.
आदर्श गैस की स्थिर दाब पर ग्राम-अणुक विशिष्ट ऊष्मा Cp की परिभाषा दीजिए।
उत्तर-
ग्राम-अणुक विशिष्ट ऊष्मा-गैस के 1 ग्राम अणु को मोल कहते हैं। 1 मोल गैस का द्रव्यमान M ग्राम होता है, जहाँ M गैस का अणुभार है। गैस के 1 ग्राम अणु अथवा 1 मोल को स्थिर आयतन पर तथा स्थिर दाब पर 1°C ताप बढ़ाने के लिए क्रमश: Mcυ तथा Mcpऊष्मा की आवश्यकता होगी। ऊष्मा की इन मात्राओं को ग्राम-अणुक विशिष्ट ऊष्मा कहते हैं तथा इन्हें क्रमश: Cυ तथा Cp से व्यक्त करते हैं।
प्रश्न 11.
किसी धातु के रेखीय प्रसार गुणांक तथा क्षेत्रीय प्रसार गुणांक में सम्बन्ध लिखिए।
उत्तर-
β = 2α.
प्रश्न 12.
किसी ठोस के रेखीय प्रसार गुणांक तथा आयतन प्रसार गुणांक में सम्बन्ध लिखिए।
उत्तर-
γ = 3α
प्रश्न 13.
रेखीय प्रसार गुणांक, क्षेत्रीय प्रसार गुणांक तथा आयतन प्रसार गुणांक में क्या सम्बन्ध है?
उत्तर-
α: β: γ = 1:2:3.
प्रश्न 14.
ठोस के लिए ऊष्मीय प्रसंगर गुणांक नियत नहीं होता है। क्यों?
उत्तर-
ऊष्मीय प्रसार गुणांक ताप के साथ परिवर्तित होता है क्योंकि कोई भी ठोस वस्तु ऊष्मा पाकर फैल जाती है तथा ठण्डा होने पर सिकुड़ जाती है। इसीलिए किसी भी ठोस वस्तु के लिए ऊष्मीय प्रसार गुणांक नियत नहीं रहता है।
प्रश्न 15.
साधारण काँच की प्लेट अधिक गर्म करने पर चटक जाती है। क्यों?
उत्तर-
साधारण काँच की प्लेट का आयतन प्रसार गुणांक अधिक होता है, इसलिए अधिक गर्म करने पर यह चटक जाती है।
प्रश्न 16.
विशिष्ट ऊष्मा किसकी सबसे अधिक होती है तथा किसकी सबसे कम?
उत्तर-
जल की सर्वाधिक तथा पारे की सबसे कम।।
प्रश्न 17.
पानी की विशिष्ट ऊष्मा जूल के पदों में कितनी होती है।
उत्तर-
4.18 x 103 जूल/किग्रा °C
प्रश्न 18.
ऊष्माधारिता का सूत्र लिखिए।
उत्तर-
ऊष्माधारिता = द्रव्यमान x विशिष्ट ऊष्मा।
प्रश्न 19.
स्थिर आयतन पर विशिष्ट ऊष्मा Cυ की परिभाषा दीजिए।
उत्तर-
स्थिर आयतन पर किसी गैस के 1 ग्राम द्रव्यमान का ताप 1°C बढ़ाने के लिए आवश्यक ऊष्मा की मात्रा को उस गैस की स्थिर आयतन पर विशिष्ट ऊष्मा Cυ कहते हैं।
प्रश्न 20.
बर्फ की गलन की गुप्त ऊष्मा का मान बताइए।
उत्तर-
80 कैलोरी/ग्राम।
प्रश्न 21.
जल की वाष्पन की गुप्त ऊष्मा का मान बताइए।
उत्तर-
536 कैलोरी/ग्राम।।
प्रश्न 22.
बर्फ के गलन की गुप्त ऊष्मा 80 कैलोरी/ग्राम है। इसका मान जूल/किग्रा में लिखिए।
उत्तर-
3.36 x 105 जूल/किग्रा।
प्रश्न 23.
गलनांक पर अपद्रव्यों का क्या प्रभाव पड़ता है?
उत्तर-
गलनोक कम हो जाता है।
प्रश्न 24.
कैलोरीमिति का क्या सिद्धान्त है?
उत्तर-
ऊष्मा का प्रवाह सदैव ऊँचे ताप वाली वस्तु से नीचे ताप वाली वस्तु में होता है और यह प्रक्रिया तब तक चलती है जब तक कि दोनों वस्तुओं के ताप समान नहीं हो जाते। इस क्रिया में बाहर से ऊष्मा का आदान-प्रदान न हो तो एक वस्तु द्वारा दी गई ऊष्मा, दूसरी वस्तु द्वारा ली गई ऊष्मा के बराबर होगी। यही कैलोरीमिति का सिद्धान्त है। इस सिद्धान्त के अनुसार, गर्म वस्तु द्वारा दी गई ऊष्मा = ठण्डी वस्तु द्वारा ली गई ऊष्मा।
लघु उत्तरीय प्रश्न
प्रश्न 1.
रेखीय प्रसार गुणांक की परिभाषा तथा मात्रक लिखिए।
या रेखीय प्रसार गुणांक (α) का अर्थ समझाइए।
उत्तर-
रेखीय प्रसार गुणांक (Coefficient of linear expansion)-माना किसी छड़ की एक निश्चित ताप t पर लम्बाई L है तथा उसके ताप में ΔT की वृद्धि करने पर लम्बाई में ΔL की वृद्धि हो जाती है। किसी ठोस वस्तु को गर्म करने पर उसकी लम्बाई में वृद्धि निम्न बातों पर निर्भर करती है–
(i) छड़ की प्रारम्भिक लम्बाई पर-लम्बाई में वृद्धि छड़ की प्रारम्भिक लम्बाई (L) के अनुक्रमानुपाती होती है। अर्थात्
∆L ∝ L
(ii) छड़ के ताप में वृद्धि पर लम्बाई में वृद्धि ΔL छड़ के ताप में वृद्धि ΔT के अनुक्रमानुपाती होती
अर्थात ∆L ∝∆L
उपर्युक्त दोनों तथ्यों को एक साथ लिखने पर,
∆L ∝ L∆T
अथवा ∆L = α L∆T …(1)
जहाँ α (ऐल्फा) एक नियतांक है। यह छड़ के पदार्थ का “रेखीय प्रसार गुणांक’ कहलाता
किसी पदार्थ का रेखीय प्रसार गुणांक, लम्बाई में उस वृद्धि के बराबर होता है, जब उसकी एकांक लम्बाई का ताप 1°C बढ़ाते हैं।
यह छड़ के पदार्थ पर भी निर्भर करता है। यदि विभिन्न पदार्थों की समान छड़ों को समान ताप तक गर्म किया जाये तो उनकी लम्बाई में वृद्धि भिन्न-भिन्न होती है। उपर्युक्त सूत्र (2) से रेखीय प्रसार गुणांक का मात्रक =
अत: रेखीय प्रसार गुणांक का मात्रक प्रति डिग्री सेल्सियस होता है।
प्रश्न 2.
आयतन प्रसार गुणांक की परिभाषा दीजिए तथा जल के असंगत प्रसार की व्याख्या कीजिए।
उत्तर-
आयतन प्रसार गुणांक-—किसी वस्तु का आयतन प्रसार गुणांक उसके आयतन में वृद्धि के बराबर होता है जब उसके एकांक आयतन का ताप 1°C बढ़ाया जाता है। आयतन प्रसार गुणांक को मात्रक प्रति डिग्री सेल्सियस होता है।
जल का असंगत प्रसार–प्राय: सभी द्रवों का आयतन ताप बढ़ने से बढ़ता है परन्तु जब जल को 0°C से 4°C तक गर्म किया जाता है, तो उसका आयतन (बढ़ने की बजाय घटता है तथा 4°C के पश्चात् फिर जल का आयतन बढ़ने लगता है [चित्र 11.1 (a)]। 4C पर जल का आयतन न्यूनतम होता है; अतः 4°C पर जल का घनत्व अधिकतम होता है। जल के अधिकतम घनत्व का मान 1.0000 x 103 किग्रा/मीटर3 है। जल के घनत्व तथा ताप का ग्राफ चित्र 11.1(b) में प्रदर्शित है।
स्पष्टत: 0°C से 4°C तक जल का प्रसार असामान्य होता है, परन्तु 4°C से ऊपर के तापों पर इसका प्रसार सामान्य होता है।
प्रश्न 3.
रेखीय प्रसार गुणांक (α) तथा क्षेत्रीय प्रसार गुणांक (β) में सम्बन्ध स्थापित कीजिए।
उत्तर-
रेखीय प्रसार गुणांक (α) तथा क्षेत्रीय प्रसार गुणांक (β) में सम्बन्ध-
माना किसी वस्तु की एक वर्गाकार पटल ABCD है, जिसकी प्रत्येक भुजा की लम्बाई 1 मीटर है। इसका प्रारम्भिक क्षेत्रफल 1 मीटर होगा। पदार्थ का रेखीय प्रसार गुणांक α है। माना वर्गाकार पटल के ताप में 1°C की वृद्धि की जाती है। तब इस नये ताप पर
प्रश्न 4.
वास्तविक तथा आभासी प्रसार गुणांकों में सम्बन्ध स्थापित कीजिए।
उत्तर-
वास्तविक तथा आभासी-प्रसार-गुणांकों में सम्बन्ध- माना कि काँच के एक बर्तन में कोई द्रव भरा है जिसका आयतन V है। माना कि बर्तन को गर्म करके द्रव के ताप में ∆t की वृद्धि की जाती है। तब
अत: किसी द्रव को वास्तविक प्रसार गुणांक उस द्रव के आभासी-प्रसार गुणांक तथा बर्तन के पदार्थ के आयतन प्रसार गुणांक के योग के बराबर होता है।
प्रश्न 5.
ठण्डे प्रदेशों में तालाबों के जम जाने पर भी उसमें मछलियाँ जीवित कैसे रहती हैं?
उत्तर-
ठण्डे प्रदेशों में सर्दी के दिनों में वायुमण्डल का ताप 0C से भी कम रहता है। अत: वहाँ तालाबों में जल जमने लगता है परन्तु 4°C पर जल का घनत्व अधिकतम होने के कारण नीचे को जल 4°C बना रहता है। तापमान के 0°C पहुँचने पर तालाब की ऊपरी सतह पर बर्फ जम जाती है (चित्र 11.3)। बर्फ के सम्पर्क में जो जले होता है, उसका ताप 0°C रहता है। बर्फ ऊष्मा की कुचालक है; अत: नीचे से ऊष्मा ऊपर की ओर अत्यन्त ॐ मछलियाँ । धीरे-धीरे संचरित होती है, फलस्वरूप नीचे का ताप भी । 4°C ही बना रहता है। इस प्रकार इस जल में मछलियाँ तथा
अन्य जल के जन्तु जीवित रहते हैं।
प्रश्न 6.
रेल की पटरियों के बीच खाली स्थान क्यों छोड़ा जाता है?
उत्तर-
रेल की पटरियों को बिछाते समय उनके बीच कुछ रिक्त स्थान छोड़ दिया जाता है, जिससे कि गर्मी के दिनों में ताप बढ़ने पर पटरियों को फैलने के लिए स्थान मिल सके। यदि पटरियाँ सटाकर बिछा दी जाएँ, तो गर्मियों में फैलने के कारण पटरियाँ तिरछी हो जायेंगी, जिससे रेल दुर्घटना हो सकती है।
प्रश्न 7.
सर्दियों की रातों में जल के पाइप कभी-कभी फट जाते हैं, क्यों?
उत्तर-
क्योंकि 0°C पर बर्फ का आयतन जल के आयतन से अधिक होता है, अतः सर्दी की रातों में जब वायुमण्डल का ताप 0°C से कम हो जाता है, तो पाइप में उपस्थित जल जमकर बर्फ में बदल जाता है। बर्फ बनने पर आयतन बढ़ता है, परन्तु आयतन प्रसार के लिए स्थान उपलब्ध न होने के कारण पाइप की सतह पर अन्दर से दबाव बढ़ता है, जिससे वे फट जाते हैं।
प्रश्न 8.
समतापीय तथा रुद्धोष्म प्रक्रमों में क्या अन्तर है?
उत्तर-
समतापीय तथा रुद्धोष्म प्रक्रमों में अन्तर ।
प्रश्न 9.
वाष्पन तथा क्वथन में अन्तर स्पष्ट कीजिए।
उत्तर-
घाष्पन तथा क्वथन में अन्तर
विस्तृत उत्तरीय प्रश्न
प्रश्न 1.
क्षेत्रीय प्रसार गुणांक (β) तथा आयतन प्रसार गुणांक (γ) का अर्थ समझाइए। α β एवं γ में सम्बन्ध स्थापित कीजिए।
उत्तर-
क्षेत्रीय प्रसार गुणांक-माना किसी आयताकार पटल का क्षेत्रफल A है तथा गर्म करके, इसके ताप में ∆t की वृद्धि करने पर क्षेत्रफल में वृद्धि ∆A होती है। प्रयोगों द्वारा यह पाया गया है कि क्षेत्रफल में वृद्धि
(i) प्रारम्भिक क्षेत्रफल के अनुक्रमानुपाती होती है अर्थात् ∆A∝A
(ii) ताप में वृद्धि के अनुक्रमानुपाती होती है अर्थात् ∆A∝∆T
उपर्युक्त दोनों तथ्यों को एक साथ लिखने पर ।
∆Α ∝ ΑΔΤ अथवा
∆A = β. A∆T…(1)
यहाँ β (बीटा) एक नियतांक है जिसे पटल के पदार्थ का क्षेत्रीय प्रसार गुणांक कहते हैं। इसका मान अन्य किसी राशि (जैसे-आकार या आकृति) पर निर्भर नहीं करता, बल्कि केवल पदार्थ की प्रकृति पर निर्भर करता है।
अत: किसी पदार्थ के पटल (lamina) के एकांक क्षेत्रफल का ताप 1°c बढ़ाने पर उसके क्षेत्रफल में जो वृद्धि होती है उसे उसे पदार्थ का क्षेत्रीय प्रसार गुणांक कहते हैं।
क्षेत्रीय प्रसार गुणांक (β) का मात्रक भी प्रति °c होता है।
आयतन प्रसार गुणांक- प्रयोगों द्वारा पाया गया कि किसी ठोस के आयतन में वृद्धि (i) उसके प्रारम्भिक आयतन v के तथा (ii) ताप में वृद्धि ∆t के अनुक्रमानुपाती होती है अर्थात् यदि किसी वस्तु का प्रारम्भिक आयतन V हो तथा उसके ताप में ∆T वृद्धि करने पर उसके आयतन में ∆V की वृद्धि हो, तो उपर्युक्त तथ्यों के आधार पर
अतः किसी वस्तु का आयतन प्रसार गुणांक उसके आयतन में वृद्धि के बराबर होता है जब उसके एकांक आयतन का ताप 1°C बढ़ाया जाता है।
आयतन प्रसार गुणांक को मात्रक प्रति डिग्री सेल्सियस होता है।
रेखीय, क्षेत्रीय और आयतन प्रसार गुणांक में सम्बन्ध
हम जानते हैं कि
β = 2α , γ = 3α
अतः α : β : γ = α : 2 α : 3 α
α : β : γ = 1 : 2 : 3
प्रश्न 2.
इस्पात तथा ताँबे की छड़ों की लम्बाइयाँ क्या होनी चाहिए जिससे कि सभी तापों पर इस्पात की छड़ ताँबे की छड़ से 5 सेमी बड़ी हो? इस्पात का रेखीय-प्रसार-गुणांक 1.1 x 105°C-1 तथा ताँबे का 1.7 x 10-5°c-1 है।
हल-
माना इस्पात की छड़ की लम्बाई ls तथा ताँबे की छड़ की लम्बाई lc है। सभी तापों पर,
ls – lc = 5
सेमी ऐसा तब ही सम्भव है, जब किसी भी ताप-परिवर्तन ΔT के लिए, दोनों छड़ों में परिवर्तन समान हो अर्थात्
प्रश्न 3.
रुद्धोष्म प्रक्रम क्या है? रुद्रोष्म प्रक्रम में आदर्श गैस के लिए परमताप ‘T’ एवं दाब ‘P’ में सम्बन्ध स्थापित कीजिए।
उत्तर-
रुद्धोष्म प्रक्रम-जब किसी ऊष्मागतिक निकाय में परिवर्तन इस प्रकार होता है कि सम्पूर्ण प्रक्रम में निकाय तथा बाह्य वातावरण के बीच ऊष्मा का आदान-प्रदान नहीं होता तो इस प्रकार के प्रक्रम को ‘रुद्धोष्म अथवा स्थिरोष्म प्रक्रम’ कहते हैं।
आदर्श गैस के लिए परमताप T एवं दाब P में सम्बन्धमाना आदर्श गैस के 1 ग्राम-अणु (1 मोल) का दाब P, परमताप T तथा आयतन V है। माना कि गैस में बहुत थोड़ा-सा ‘रुद्धोष्म’ प्रसार होता है जिसमें कि यह बाह्य कार्य करती हैं। चूँकि गैस के भीतर बाहर से ऊष्मा को नहीं आने दिया जाता है, अत: बाह्य कार्य करने के लिए गैस अपनी ऊष्मा (आन्तरिक ऊर्जा) को ही प्रयुक्त करेगी। फलतः, किसी किए गये कार्य के तुल्य गैस की आन्तरिक ऊर्जा कम हो जायेगी जिससे गैस का ताप गिर जायेगा। अत: यदि गैस की
आन्तरिक ऊर्जा में होने वाली कमी dU हो तथा किया गया बाह्य कार्य dW हो, तो ऊष्मागतिकी के प्रथम नियम के अनुसार,
dU + dW = 0 …(1)
माना कि रुद्धोष्म प्रसार के कारण गैस का आयतन V से V + dV तक बढ़ जाता है तथा ताप T से T – dT तक गिर जाता है (गैस के दाब P को स्थिर मान सकते हैं क्योंकि आयतन में परिवर्तन बहुत कम हुआ है)। तब, गैस द्वारा किया गया बाह्य कार्य
dW = P dV …(2)
चूँकि एक आदर्श गैस के अणु परस्पर आकर्षित नहीं करते, अत: इसकी आन्तरिक ऊर्जा पूर्णतया अणुओं की गतिज ऊर्जा ही है तथा केवल गैस के ताप पर निर्भर करती है। अत: गैस का ताप dT गिरने पर इसकी आन्तरिक ऊर्जा में होने वाली कमी गैस से ली गई ऊष्मा के तुल्य होगी, अर्थात् ।
dU = Cυ dT …(3)
जहाँ, Cυ गैस की स्थिर आयतन पर ग्राम-अणुक विशिष्ट ऊष्मा है। समी० (2) तथा (3) से dW तथा dU के मान समी० (1) में रखने पर,
प्रश्न 4.
Cp तथा Cν का अर्थ समझाइए। किसी आदर्श गैस के लिए सिद्ध कीजिए कि Cp – Cυ = R, जहाँ प्रतीकों के सामान्य अर्थ हैं।
उत्तर-
साधारणत: किसी गैस की दो विशिष्ट ऊष्माएँ होती हैं। एक । तो वह जो गैस को ऊष्मा देते समय उसका आयतन स्थिर रखकर उसके दाब को बढ़ने दिया गया हो (अर्थात् गैस का प्रसार न होने दिया गया हो) तथा दूसरी वह जो ऊष्मा देते समय गैस का दाब स्थिर रखकर उसके आयतन को बढ़ने दिया गया हो (अर्थात् गैस का स्थिर दाब पर प्रसार होने दिया गया हो)। इन्हें क्रमश: गैस की ‘स्थिर आयतन पर विशिष्ट ऊष्मा’ तथा ‘स्थिर दाबे पर विशिष्ट ऊष्मा’ कहते हैं।
स्थिर दाब पर ग्राम-अणुक विशिष्ट ऊष्मा(Cp) – स्थिर दाब पर, किसी गैस के 1 ग्राम-अणु द्रव्यमान का ताप 1°C बढ़ाने के। लिए जितनी ऊष्मा की आवश्यकता होती है, उसे स्थिर दाब पर गैस की ग्राम-अणुक विशिष्ट ऊष्मा (Cp) कहते हैं।
Cp = MCp (जहाँ, M = अणुभार)
स्थिर आयतन पर ग्राम-अणुळे विशिष्ट ऊष्मा (Cυ)-स्थिर आयतन पर किसी गैस के 1 ग्राम-अणु द्रव्यमान का ताप 1°C बढ़ाने के लिए आवश्यक ऊष्मा की मात्रा को उस गैस की स्थिर आयतन पर ग्राम-अणुक विशिष्ट ऊष्मा (Cυ) कहते हैं।
Cυ = MCυ (जहाँ M = अणुभार)
मेयर के सूत्र Cp – Cυ = R की व्युत्पत्ति-माना आदर्श गैस के 1 ग्राम-अणु या एक मोल का दाब, ताप व आयतन क्रमश: P, T व V हैं। गैस की यह अवस्था ताप T पर खींचे गए एक समतापीय वक्र के बिन्दु A से प्रदर्शित है।
माना गैस का आयतन स्थिर रखते हुए उसका ताप AT बढ़ाया गया, जिसके कारण यह अवस्था A से C में चली जाती है। ऊष्मागतिकी के प्रथम नियम से प्रक्रम A →C में गैस की आन्तरिक ऊर्जा में परिवर्तन
Uc -UA = ΔU = Q – W
जहाँ Q गैस द्वारा ली गई ऊष्मा तथा W गैस द्वारा कृत-कार्य है। चूंकि इस प्रक्रम में आयतन नियत है।
(ΔV = 0), अतः W = P X ΔV = 0 तथा Q = Cυ ΔT
इसलिए Uc – UA = Cυ ΔT …(1)
माना गैस को पुनः अवस्था A में वापस लाया जाता है फिर नियत दाब पर इसका ताप T से T + ΔT कर दिया जाता है, जिससे कि गैस अवस्था A से B में चली जाती है। अत: A → B में आन्तरिक ऊर्जा में परिवर्तन
UB – UA = ΔU = Q – W
चूँकि इस प्रक्रम में आयतन में परिवर्तन ΔV होता है।
अतः इस प्रक्रम में किया गया कार्य W = PΔV
तथा Q = CpΔt
UB – UA = CpΔT – PΔV ..(2)
प्रक्रम A → B के लिए प्रारम्भिक अवस्था A में गैस का आयतन V व परमताप T है तथा अन्तिम अवस्था B में गैस का आयतन (V + ΔV) तथा परमताप (T + ΔT) हो जाता है, जबकि दाब P नियत रहता है। अत: अवस्था A व B के लिए आदर्श गैस समीकरण से
PV = RT (अवस्था A के लिए) …(3)
P(V + ΔV) = R(T + ΔT) (अवस्था B के लिए) ..(4)
समी० (4) में से समी० (3) को घटाने पर,
PΔV = RΔT …(5)
समी० (5) तथा समी० (2) से,
UB – UA = CpΔT – RΔT …(6)
चूंकि प्रक्रम A → B तथा A →C में गैस के ताप में परिवर्तन ΔT होता है तथा आदर्श गैस की आन्तरिक ऊर्जा केवल ताप पर निर्भर करती है। अत: इन दोनों प्रक्रमों में आन्तरिक ऊर्जा में समान परिवर्तन होगा। अर्थात् ।
UC -UA = UB – UA
समी० (1) व समी० (6) से,
CυΔT = CpΔT – RΔT
दोनों पक्षों में ΔT से भाग देने पर
प्रश्न 5.
समतापी एवं रुद्रोष्म प्रक्रम के लिए दाब-आयतन ग्राफ खींचिए। इनमें किस वक़ का ढलान अधिक होता है? इसका कारण दीजिए।
उत्तर-
समतापी एवं रुद्धोष्म प्रक्रम के लिए दाब-आयतन ग्राफ—चित्र 11.5 में किसी आदर्श गैस के एक निश्चित द्रव्यमान के लिए, दो स्थिर तापों T1 व T2 पर समतापी वक्र खींचे गये हैं। माना कि गैस के प्रारम्भिक दाब, आयतन व ताप क्रमशः P1,V1 व T1, हैं। गैस की यह अवस्था (UPBoardSolutions.com) चित्र 11.5 में बिन्दु A के द्वारा प्रदर्शित है जो कि T1 ताप वाले समतापी वक्र पर स्थित है। यदि हम गैस के ताप को T1 पर ही स्थिर रखते हुए इसका ‘समतापी’ प्रसार (isothermal expansion) करें तो इसकी अवस्थाएँ इसी वक्र पर विभिन्न बिन्दुओं द्वारा प्रदर्शित होंगी।
रुद्वोष्म वक्र परन्तु यदि गैस का अवस्था A से रुद्धोष्म प्रसार करें (जिससे कि यह बाहर से ऊष्मा नहीं ले सकती) तो दाब के साथ-साथ इसका ताप भी गिर जायेगा। माना कि गैस के अन्तिम
आयतन व ताप क्रमशः P2, V2, व T2, हो जाते हैं। गैस की यह अवस्था बिन्दु B द्वारा प्रदर्शित होगी जो कि ताप T2, वाले । समतापी वक्र पर स्थित है। चूंकि गैस की अवस्था A से अवस्था B तक रुद्धोष्म प्रसार हुआ है, अत: बिन्दु A व B को मिलाने वाला वक्र AB रुद्धोष्म वक्र होगा।
यदि हम गैस के दाब को स्थिर रखते हुए उसे गर्म करें तो गैस का प्रसार चार्ल्स के नियम के अनुसार होगा। इस दशा में गैस का दाब-आयतन वक्र (P-V curve) एक सरल रेखा के रूप में होगा। इसे ‘समदाबी रेखा’ कहते हैं तथा यह आयतन-कक्ष के समान्तर होती है। (चित्र 11.5)। दूसरे शब्दों में, समदाबी रेखा का आयतन-अक्ष से ढलान (slope) शून्य है।
समतापी तथा रुद्धोष्म वक्रों की तुलना से यह स्पष्ट है कि रुद्धोष्म वक्र का ढलान समतापी वक्र के ढलान से अधिक है। इसका कारण यह है कि गैस के समतापी तथा रुद्धोष्म दोनों प्रसारों में गैस का दाब गिरता है, परन्तु गैस के दाब में होने वाली. उतनी ही गिरावट के लिए, गैस के आयतन में रुद्धोष्म प्रसार के समय होने वाली वृद्धि, समतापी प्रसार के समय होने वाली वृद्धि की अपेक्षा कम होती है क्योंकि रुद्धोष्म प्रसार में गैस का ताप भी गिर जाता है।
आदर्श गैस के लिए, रुद्धोष्मं वक़ का ढलान समतापी वक़ के ढलान से γ गुना अधिक होता है-
आदर्श गैस के समतापी वक्र की समीकरण निम्न है
γ का मान सदैव 1 से अधिक होता है, एक-परमाणुक गैस के लिए 1.67, द्वि-परमाणुक गैस के लिए 1.41. तथा बहुपरमाणुक गैस के लिए 1.33. अत: किसी बिन्दु पर रुद्धोष्म वक्र ढलान उस बिन्दु पर समतापी वक्र के ढलान से अधिक होता है। किसी रुद्धोष्म प्रक्रम में γ का मान जितना अधिक होगा, रुद्धोष्म वक्र का ढलान उतना ही अधिक होगा। द्वि-परमाणुक गैस की अपेक्षा, एक-परमाणुक गैस के रुद्धोष्म वक्र का ढलान अधिक होता है।
ढलान अधिक होने के कारण
(i) गैस के प्रसार में रुद्धोष्म वक्र समतापी वक्र के नीचे होगा [चित्र 11.6 (a)]।
(ii) गैस के संकुचन में रुद्धोष्म वक्र समतापी वक्र से ऊपर होगा [चित्र 11.6 (b)]]
प्रश्न 6.
समतापीय प्रक्रम की एक अवस्था A(P1, V1) से दूसरी अवस्था B(P2, V2) तक परिवर्तन में कृत कार्य का व्यंजक लिखिए।
उत्तर-
समतापीय प्रक्रम-जब किसी ऊष्मागतिक निकाय में कोई भौतिक परिवर्तन इस प्रकार हो कि सम्पूर्ण प्रक्रम में निकाय का ताप स्थिर बना रहे, समतापीय प्रक्रम कहलाता है। समतापीय प्रक्रम में आदर्श गैस द्वारा कृत कार्य (Work done by an ideal gas in isothermal process)-जब किसी गैस के आयतन में समतापी प्रसार होता है तो गैस द्वारा कार्य किया जाता है। माना कि ॥ मोल आदर्श गैस एक स्थिर परमताप T पर प्रारम्भिक आयतन V; से अन्तिम आयतन V, तक प्रसारित होती है। तब, गैस द्वारा किया गया बाह्य कार्य
प्रश्न 7.
0.20 किग्रा द्रव्यमान के एक धातु के गोले को 150°C तक गर्म करने के पश्चात 27°C के 150 सेमी3 जल से भरे ताँबे के ऊष्मामापी (जिसका जल-तुल्यांक 0.025 किग्रा है) में डाला जाता है। स्थायी अवस्था में अन्तिम ताप 40°C है। धातु की विशिष्ट ऊष्मा ज्ञात कीजिए। जल का घनत्व 103 किग्रा/मी3 तथा विशिष्ट ऊष्मा 4.2 x 103 जूल किग्रा-1°C-1. यदि बाह्य परिवेश में ऊष्मा ह्रास नगण्य नहीं है, तब आपका उत्तर विशिष्ट ऊष्मा के वास्तविक मान से कम होगा या अधिक।
हल-
माना धातु की विशिष्ट ऊष्मा s है, तब धातु के गोले द्वारा दी गई ऊष्मा
यदि बाह्य परिवेश में ऊष्मा का ह्रास होता है, तब ली गई ऊष्मा कम होगी। अत: विशिष्ट ऊष्मा c कम होगी।
प्रश्न 8.
100 ग्राम जल का ताप 24°C से 90°C बढ़ाने के लिए उसमें कुछ भाप घोली गई। आवश्यक भाप के द्रव्यमान की गणना कीजिए। भाप की गुप्त ऊष्मा 540 कैलोरी ग्राम-1। जल की विशिष्ट ऊष्मा 1.0 कैलोरी/(ग्राम°c) है।
हल-
माना आवश्यक भाप का द्रव्यमान m, गुप्त ऊष्मा L तथा जल की विशिष्ट ऊष्मा c है।
100°C के जल में संघनित होने के लिए भाप द्वारा दी गई ऊष्मा mL तथा संघनित जल को 100°C से 90°C तक ठण्डा होने में दी गई ऊष्मा m c ΔT है, जहाँ ΔT = 100°C-90°C = 10°C
तब, भाप द्वारा कुल दी गई ऊष्मा