Chapter 9 Area of Parallelograms and Triangles (समान्तर चतुर्भुज और त्रिभुजों के क्षेत्रफल)
प्रश्नावली 9.1
Q1. निम्नलिखित आकृतियों में से कौन-सी आकृतियाँ एक ही आधार और एक ही समांतर रेखाओं के बीच स्थित हैं? ऐसी स्थिति में, उभयनिष्ठ आधार और दोनों समांतर रेखाएँ लिखिए।
(i)
हल : यह आकृति एक ही आधार CD और एक ही समान्तर रेखाओं AB || CD के मध्य स्थित है |
(ii)
हल : यह आकृति एक ही आधार और एक ही समांतर रेखाओं के बीच स्थित नहीं हैं|
(iii)
हल : यह आकृति एक ही आधार QR और एक ही समान्तर रेखाओं PS || QR के मध्य स्थित है |
(iv)
हल : यह आकृति एक ही आधार और एक ही समांतर रेखाओं के बीच स्थित नहीं हैं|
(v)
हल : यह आकृति एक ही आधार और एक ही समांतर रेखाओं के बीच स्थित नहीं हैं|
(vi)
हल : यह आकृति एक ही आधार और एक ही समांतर रेखाओं के बीच स्थित नहीं हैं|
प्रमेय :
प्रमेय 9.1 : सिद्ध कीजिए कि एक ही आधार और एक ही समांतर रेखाओं के बिच स्थित समान्तर चतुर्भुज क्षेत्रफल में बराबर होते हैं |
दिया है : ||gm ABCD और ||gm EFCD
एक ही आधार CD और AB || CD के मध्य स्थित है |
सिद्ध करना है :
ar(ABCD) = ar(EFCD)
उपपति :
ΔADE तथा ΔBCF में
AD = BC ( ||gm के सम्मुख भुजा बराबर होते हैं)
∠DAE = ∠CBF (संगत कोण)
∠AED = ∠BFC (संगत कोण)
ASA सर्वांगसमता नियम से
ΔADE ≅ ΔBCF
अत: ar(ADE) = ar(BCF) …….. (i)
(सर्वांगसम त्रिभुज क्षेत्रफल में बराबर होते हैं )
अब, दोनों तरफ ar(EBCD) जोड़ने पर
ar(ADE) + ar(EBCD) = ar(BCF) + ar(EBCD)
ar(ABCD) = ar(EFCD)
Proved.
प्रश्नावली 9.2
हल :
दिया है : E, F, G और H क्रमश: समांतर चतुर्भुज
ABCD कि भुजाओं के मध्य-बिंदु हैं |
Q3. P और Q क्रमश: समांतर चतुर्भुज ABCD की भुजाओं DC और AD पर स्थित बिंदु है | दर्शाइए ar (APB) = ar (BQC) है |
हल :
दिया है : P और Q क्रमश: समांतर चतुर्भुज ABCD
की भुजाओं DC और AD पर स्थित बिंदु है |
सिद्ध करना है :
ar(APB) = ar(BQC)
प्रमाण :
ΔAPB तथा ||gm ABCD एक ही आधार AB तथा AB || CD के मध्य स्थित है |
Q4. P समांतर चतुर्भुज ABCD के अभ्यंतर में स्थिति कोई बिंदु है | दर्शाइए कि
हल :
दिया है : ABCD एक समांतर चतुर्भुज है जिसके अभ्यंतर P कोई बिंदु है |
सिद्ध करना है :
रचना : P बिंदु से होकर AB के समांतर GH खिंचा और AD के समान्तर EF खिंचा |
प्रमाण :
AB || GH रचना से और AB = GH है इसलिए ABHG एक समांतर चतुर्भुज है |
इसी प्रकार DCHG भी एक समांतर चतुर्भुज है |
अब
ΔAPB तथा ||gm ABHG एक ही आधार AB तथा AB || GH के मध्य स्थित है |
Q5. PQRS और ABRS समांतर चतुर्भुज है तथा X भुजा BR पर स्थित कोई बिंदु है | दर्शाइए कि :
हल :
दिया है : PQRS और ABRS समांतर चतुर्भुज है तथा X भुजा BR पर स्थित कोई बिंदु है |
सिद्ध करना है :
प्रमाण :
||gm PQRS तथा ||gm ABRS एक ही आधार SR तथा SR|| PB के मध्य स्थित हैं |
इसलिए प्रमेय 9.1 से
ar(PQRS) = ar(ABRS) ……. (i) Proved
अब, ΔAXS तथा ||gm ABRS एक ही आधार AS तथा AS || BR के मध्य स्थित है |
Q6. एक किसान के पास समांतर चतुर्भुज (PQRS) के रूप का एक खेत था। उसने RS पर स्थित कोई बिन्दु A लिया और उसे P और Q से मिला दिया। खेत कितने भागों में विभाजित हो गया है? इन भागों के आकार क्या हैं? वह किसान खेत में गेहूँ और दालें बराबर-बराबर भागों में अलग-अलग बोना चाहती है। वह ऐसा कैसे करे?
प्रश्नावली 9.3
Q1. ΔABC की एक मध्यिका AD पर स्थित E कोई बिंदु है | दर्शाइए कि ar(ABE) = ar(ACE) है |
हल :
दिया है : ΔABC की एक मध्यिका AD पर स्थित E कोई बिंदु है |
सिद्ध करना है : ar(ABE) = ar(ACE)
रचना : B तथा C E को मिलाया |
प्रमाण : ΔABC में,
AD ΔABC कि एक माध्यिका है |
इसलिए ar(ABD) = ar(ACD) ……… (i)
(त्रिभुज कि माध्यिका उसे दो बराबर क्षेत्रफल वाले त्रिभुजों में बाँटता है )
अब, ΔBEC में,
ED भी ΔBEC कि एक माध्यिका है |
इसलिए ar(BED) = ar(CED) ……. (ii)
समीकरण (i) में से (ii) घटाने पर
ar(ABD) – ar(BED) = ar(ACD) – ar(CED)
या ar(ABE) = ar(ACE)
Proved.
Q3. दर्शाइए कि समांतर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफलों वाले चार त्रिभुजों में बाँटते हैं।
हल :
दिया है : ABCD एक समांतर चतुर्भुज है जिसके दो विकर्ण AC तथा BD हैं | जो एक दुसरे को बिंदु O पर प्रतिच्छेद करते है |
सिद्ध करना है :
ar(AOB) = ar(BOC) = ar(COD) = ar(AOD)
प्रमाण :
ΔABC की भुजा AC का O मध्य-बिंदु है |
इसलिए OB एक माध्यिका है |
अत: ar(AOB) = ar(BOC) ……. (i)
(त्रिभुज कि माध्यिका उसे दो बराबर क्षेत्रफल वाले त्रिभुजों में बाँटता है )
इसीप्रकार, ΔACD की भुजा AC का O मध्य-बिंदु है |
इसलिए OD एक माध्यिका है |
अत: ar(AOD) = ar(COD) ……. (ii)
अब और ΔBCD में
भुजा BD की मध्य-बिंदु O है अत: OC एक माध्यिका है |
अत : ar(BOC) = ar(COD) ……. (iii)
समीकरण (i), (ii) तथा (iii) से हमें प्राप्त होता है |
ar(AOB) = ar(BOC) = ar(COD) = ar(AOD)
Proved.
Q4. ABC और ABD एक ही आधार AB पर बने दो त्रिभुज हैं | यदि रेखाखंड CD रेखाखंड AB से बिंदु O पर समद्विभाजित होता है, तो दर्शाइए कि ar(ABC) = ar(ABD)
हल :
दिया है : ABC और ABD एक ही आधार AB पर बने दो त्रिभुज हैं और रेखाखंड CD रेखाखंड AB से बिंदु O पर समद्विभाजित होता है |
सिद्ध करना है : ar(ABC) = ar(ABD)
प्रमाण : DACD में भुजा CD को AB समद्विभाजित करता है जिसका मध्य-बिंदु O है |
अत: AO त्रिभुज कि एक माध्यिका है |
इसलिए ar(AOC) = ar(AOD) …… (i)
(त्रिभुज कि माध्यिका उसे दो बराबर क्षेत्रफल वाले त्रिभुजों में बाँटता है )
इसीप्रकार, DBCD में OB एक माध्यिका है |
अत:ar(BOC) = ar(BOD) ………. (ii)
समी० (i) तथा (ii) जोड़ने पर
ar(AOC) + ar(BOC) = ar(AOD) + ar(BOD)
या ar(ABC) = ar(ABD)
Proved.
या FE || BC तथा FE = BD [ चूँकि D BC का मध्य-बिंदु है ]
अत: BDEF एक समांतर चतुर्भुज है |
Proved (i)
(यदि किसी चतुर्भुज के सम्मुख भुजाओं के एक युग्म बराबर और समांतर हो तो वह समांतर चतुर्भुज होता है |)
(ii) DF समांतर चतुर्भुज BDEF का विकर्ण है इसलिए
ar(BDF) = ar(DEF) …. (i)
इसीप्रकार, DCEF भी समान्तर चतुर्भुज है और DE इसका विकर्ण है |
ar(CED) = ar(DEF) …. (ii)
और AEDF भी समान्तर चतुर्भुज है और FE इसका विकर्ण है |
तो ar(AEF) = ar(DEF) …. (iii)
समीकरण (i), (ii) और (iii) से
ar(AEF) = ar(BDF) = ar(DEF) = ar(CED) ….. (vi)
अब ar(AEF) + ar(BDF) + ar(DEF) + ar(CED) = ar(ABC)
या ar(DEF) + ar(DEF) + ar(DEF) + ar(DEF) = ar(ABC) समी० (vi)
या 4 ar(DEF) = ar(ABC)
(iii) ar(BDF) + ar(DEF) + ar(AEF) + ar(CED) = ar(ABC)
या ar(BDF) + ar(DEF) + ar(BDF) + ar(DEF) = ar(ABC)
या ar(BDEF) + ar(BDEF) = ar(ABC)
या 2 ar(BDEF) = ar(ABC)
Q6. चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि OB = OD है | यदि AB = CD है, तो दर्शाइए कि
(i) ar (DOC) = ar (AOB)
(ii) ar (DCB) = ar (ACB)
(iii) DA || CB या ABCD एक समांतर चतुर्भुज है |
हल :
दिया है : चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि OB = OD है | यदि AB = CD है |
सिद्ध करना है :
(i) ar (DOC) = ar (AOB)
(ii) ar (DCB) = ar (ACB)
(iii) DA || CB या ABCD एक समांतर चतुर्भुज है |
प्रमाण : ΔDOC तथा ΔAOB में
CD = AB (दिया है)
OD = OB (दिया है)
∠COD = ∠AOB (शीर्षाभिमुख कोण)
इसलिए, SAS सर्वांगसमता नियम से
ΔDOC ≅ ΔAOB
∠DCO = ∠BAO …… (i) BY CPCT
चूँकि ΔDOC ≅ ΔAOB इसलिए
ar (DOC) = ar (AOB) ….(ii) Proved
(सर्वांगसम त्रिभुज क्षेत्रफल में बराबर होते है )
समी० (ii) दोनों तरफ ar(BOC) जोड़ने पर
ar (DOC) + ar(BOC) = ar (AOB) + ar(BOC)
या ar(DCB) = ar (ACB)
Proved.
समी० (i) से
∠DCO = ∠BAO …… (एकांतर कोण)
इसलिए, CD || AB और CD = AB दिया है |
अत: ABCD एक समांतर चतुर्भुज है |
(सम्मुख भुजाओं के एक युग्म बराबर और समांतर हो तो वह समांतर चतुर्भुज होता है)
इसलिए DA || CB या ABCD एक समांतर चतुर्भुज है |
Proved.
Q7. बिंदु D और E क्रमश: DABC कि भुजाओं AB और AC पर इस प्रकार स्थित हैं कि ar(DBC) = ar(EBC) है | दर्शाइए कि DE || BC है |
हल :
दिया है : बिंदु D और E क्रमश: DABC कि भुजाओं AB और AC पर इस प्रकार स्थित हैं कि ar(DBC) = ar(EBC) है |
सिद्ध करना है :
DE || BC
प्रमाण :
ΔDBC और ΔEBC एक ही आधार BC और क्षेत्रफल में बराबर है क्योंकि
ar(DBC) = ar(EBC) दिया है |
अत: प्रमेय 9.3 से
DE || BC
Proved.
Q8. XY त्रिभुज ABC की भुजा BC के समांतर एक रेखा है | यदि BE || AC और CF || AB रेखा XY से क्रमश: E और F पर मिलती है, तो दर्शाइए कि:
ar(ABE) = ar(ACF)
हल :
दिया है : XY त्रिभुज ABC की भुजा BC के समांतर एक रेखा है| यदि BE || AC और CF || AB रेखा XY से क्रमश : E और F पर मिलती है|
सिद्ध करना है :
ar(ABE) = ar(ACF)
रचना : E तथा F को A से मिलाया |
प्रमाण : BC || XY और BE || AC दिया है, इसलिए BCYE एक समांतर चतुर्भुज है |
इसीप्रकार BC || XY और CE || AB दिया है अत: BCFX भी समांतर चतुर्भुज है |
अब समांतर चतुर्भुज BCYE तथा BCFX एक ही आधार BC और BC||XY के मध्य-स्थित है |
इसलिए प्रमेय 9.1 से
ar(BCYE) = ar(BCFX) ………… (1)
(एक ही आधार और एक ही समांतर रेखाओं के मध्य स्थित समान्तर चतुर्भुज क्षेत्रफल में बराबर होते है |)
ΔABE और ||gm BCYE एक ही आधार BE और BE || AC के मध्य-स्थित है |
Q9. समान्तर चतुर्भुज ABCD की एक भुजा AB को एक बिंदु P तक बढाया गया है | A से होकर CP के समांतर खिंची गई रेखा बढाई गई CB को Q पर मिलती है और फिर समांतर चतुर्भुज PBQR को पूरा किया गया है | दर्शाइए कि ar(ABCD) = ar(PBQR) है |
[संकेत: AC और PQ को मिलाइए | अब ar(ACQ) और ar(APQ) कि तुलना कीजिये |]
हल :
दिया है : ABCD तथा PBQR समांतर चतुर्भुज है |
जहाँ AQ || CP है |
सिद्ध करना है : ar(ABCD) = ar(PBQR)
प्रमाण : ||gm ABCD का AC एक विकर्ण है |
ΔACQ तथा ΔAPQ एक ही आधार AQ तथा CP || AQ के मध्य स्थित है |
अत: ar(ACQ) = ar(APQ) ………. (3)
(एक ही आधार और एक ही समांतर रेखाओं मध्य स्थित त्रिभुज क्षेत्रफल में बराबर होते हैं |)
समीकरण (3) में दोनों तरफ ar(ABQ) घटाने पर
ar(ACQ) – ar(ABQ) = ar(APQ) – ar(ABQ)
या ar(ABC) = ar(PBQ)
Q10. एक समलंब ABCD, जिसमें AB || DC हैं, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं | दर्शाइए कि ar(AOD) = ar(BOC) है |
हल :
दिया है : एक समलंब ABCD, जिसमें AB || DC हैं, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं |
सिद्ध करना है : ar(AOD) = ar(BOC)
प्रमाण : ΔACD तथा ΔBCD एक ही आधार DC तथा AB || DC
के बीच स्थित है | अत:
ar(ACD) = ar(BCD) ……… (1)
(एक ही आधार और एक ही समांतर रेखाओं मध्य स्थित त्रिभुज क्षेत्रफल में बराबर होते हैं |)
दोनों तरफ ar(COD) घटाने पर
ar(ACD) – ar(COD) = ar(BCD) – ar(COD)
या ar(AOD) = ar(BOC)
Proved.
Q11. ABCDE एक पंचभुज है| B से होकर AC के समांतर खिंची गई रेखा बढाई गई DC को F पर मिलती है | दर्शाइए कि
(i) ar(ACB) = ar(ACF)
(ii) ar(AEDF) = ar(ABCDE)
हल :
दिया है : ABCDE एक पंचभुज है| B से होकर AC के समांतर खिंची गई रेखा बढाई गई DC को F पर मिलती है |
सिद्ध करना है :
(i) ar(ACB) = ar(ACF)
(ii) ar(AEDF) = ar(ABCDE)
प्रमाण : AC || BF दिया है |
ΔACB और ΔACF एक ही आधार AC तथा AC || BF के बीच स्थित है |
अत: ar(ACB) = ar(ACF) …….. (1)
Proved.
(एक ही आधार और एक ही समांतर रेखाओं मध्य स्थित त्रिभुज क्षेत्रफल में बराबर होते हैं |)
अब दोनों तरफ ar(ACDE) जोड़ने पर
ar(ACB) + ar(ACDE) = ar(ACF) + ar(ACDE)
या ar(ABCDE) = ar(AEDF)
या ar(AEDF) = ar(ABCDE)
Proved.
Q12. गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखंड था। उस गाँव की ग्राम पंचायत ने उसके भूखंड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया ताकि वहाँ एक स्वास्थ्य केन्द्र का निर्माण कराया जा सके। इतवारी इस प्रस्ताव को इस प्रतिबन्ध् के साथस्वीकार कर लेता है कि उसे इस भाग के बदले उसी भूखंड के संलग्न एक भाग ऐसा दे दिया जाए कि उसका भूखंड त्रिभुजाकार हो जाए। स्पष्ट कीजिए कि इस प्रस्ताव को किस प्रकार कार्यान्वित किया जा सकता है।
हल :
दिया है : ABCD एक चतुर्भुज है | ar(BEC) स्वास्थ्य केंद्र के लिए भूखंड है |
सिद्ध करना है :
ar(ABCD) = ar(PCD)
रचना : A को C से मिलाया और AB के बढ़े हुए भाग P बिंदु से AC || PB खिंचा |
प्रमाण : ΔACP तथा ΔACB एक ही आधार AC तथा AC || PB के बीच स्थित है |
अत: ar(ACP) = ar(ACB) …….. (1)
(एक ही आधार और एक ही समांतर रेखाओं मध्य स्थित त्रिभुज क्षेत्रफल में बराबर होते हैं |)
ar(AEC) दोनों तरफ घटाने पर
ar(ACP) – ar(AEC) = ar(ACB) – ar(AEC)
या ar(AEP) = ar(BEC) ……. (2)
अत: ar(BEC) स्वास्थ्य केंद्र है और ar(AEP) के बदले मिला भूखंड है |
अब समीकरण (2) में दोनों तरफ ar(AECD) जोड़ने पर
ar(BEC) + ar(AECD) = ar(AEP) + ar(AECD)
या ar(ABCD) = ar(PCD)
Proved.
Q13. ABCD एक समलंब है, जिसमें AB || DC है और AC के समांतर एक रेखा AB को X पर और BC को Y पर प्रतिच्छेद करती है | सिद्ध कीजिए कि
ar (ADX) = ar (ACY) है |
[ संकेत : CX को मिलाइए ]
हल :
दिया है : ABCD एक समलंब है, जिसमें AB || DC है और AC के समांतर एक रेखा AB को X पर और BC को Y पर प्रतिच्छेद करती है |
सिद्ध करना है : ar (ADX) = ar (ACY)
रचना : CX और AY को मिलाया |
प्रमाण :
ΔADX तथा ΔACX एक ही आधार AX और AB || DC के मध्य स्थित है |
अत: ar(ADX) = ar(ACX) ………. (1)
(एक ही आधार और एक ही समांतर रेखाओं मध्य स्थित त्रिभुज क्षेत्रफल में बराबर होते हैं |)
अब ΔACY तथा ΔACX एक ही आधार AC तथा AC || XY के बीच स्थित है |
अत: ar(ACY) = ar(ACX) ……….. (2)
समीकरण (1) तथा (2) से हमें प्राप्त होता है |
ar (ADX) = ar (ACY)
Proved.
Q14. दी गई आकृति में, AP || BQ || CR है | सिद्ध कीजिए कि
ar(AQC) = ar(PBR) है |
हल :
दिया है : दी गई आकृति में, AP || BQ || CR है |
सिद्ध करना है : ar(AQC) = ar(PBR)
प्रमाण : AP || BQ दिया है | अत: ΔABQ तथा ΔPQB एक ही आधार BQ
तथा AP || BQ के मध्य स्थित है |
∴ ar(ABQ) = ar(PQB) …….. (1)
(एक ही आधार और एक ही समांतर रेखाओं मध्य स्थित त्रिभुज क्षेत्रफल में बराबर होते हैं |)
इसीप्रकार, BQ || CR दिया है और ΔBQC तथा ΔBQR एक ही आधार BQ तथा BQ || CR के बीच स्थित है |
∴ ar(BQC) = ar(BQR) …….. (2)
समीकरण (1) तथा (2) जोड़ने पर
ar(ABQ) + ar(BQC) = ar(PQB) + ar(BQR)
या ar(AQC) = ar(PBR)
Proved.
Q15. चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि ar (AOD) = ar (BOC) है | सिद्ध कीजिए कि ABCD एक समलंब है |
हल :
दिया है : चतुर्भुज ABCD के विकर्ण AC और BD
परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं
कि ar (AOD) = ar (BOC) है |
सिद्ध करना है :
ABCD एक समलंब है |
प्रमाण : ar (AOD) = ar (BOC) …….. (1) (दिया है)
समीकरण (1) में दोनों तरफ ar(COD) जोड़ने पर
ar (AOD) + ar(COD) = ar (BOC) + ar(COD)
या ar(ACD) = ar(BCD)
अब ΔACD तथा ΔBCD एक ही आधार CD और ar(ACD) = ar(BCD) है |
अत: प्रमेय 9.3 से ये दोनों त्रिभुज अवश्य ही एक ही समांतर रेखाओं के मध्य स्थित है |
इसलिए AB || DC है |
चतुर्भुज ABCD में AB || DC है अत: ABCD एक समलंब है |
Proved.
Q16. दी गई आकृति में, ar(DRC) = ar(DPC) है और ar(BDP) = ar(ARC) है | दर्शाइए कि दोनों चतुर्भुज ABCD और DCPR समलंब है |
हल :
दिया है : ar(DRC) = ar(DPC) है और
ar(BDP) = ar(ARC) है |
सिद्ध करना है : चतुर्भुज ABCD और DCPR समलंब है |
प्रमाण :
ar(ARC) = ar(BDP) ……… (1) (दिया है)
और ar(DRC) = ar(DPC) …… (2) (दिया है)
समीकरण (1) में से समीकरण (2) घटाने पर
ar(ARC) – ar(DRC) = ar(BDP) – ar(DPC)
या ar(ADC) = ar(BCD) ……. (3)
अब ΔADC और ΔBCD एक ही आधार DC और क्षेत्रफल में बराबर हैं समी० (3) से अत: प्रमेय 9.3 से
(एक ही आधार और क्षेत्रफल में बराबर त्रिभुज एक ही समांतर रेखाओं के मध्य-स्थित होते हैं|)
इसलिए, AB || CD है अत: ABCD एक समलंब है |
अब ΔDRC और ΔDPC एक ही आधार DC और समी० (2) से क्षेत्रफल में बराबर हैं | अत: प्रमेय 9.3 से
DC || RP है इसलिए DCPR एक समलंब है |
अत: चतुर्भुज ABCD और DCPR समलंब है|
Proved.
प्रश्नावली 9.4 (ऐच्छिक)
Q1. समान्तर चतुर्भुज ABCD और आयत ABEF एक ही आधार पर स्थित हैं और उनके क्षेत्रफल बराबर हैं। दर्शाइए कि समान्तर चतुर्भुज का परिमाप आयत के परिमाप से अधिक है।
हल-
दिया है : समान्तर चतुर्भुज ABCD का आधार AB तथा इसी आधार AB पर ही समान क्षेत्रफल को आयते ABEF स्थित है।
सिद्ध करना है : समान्तर चतुर्भुज ABCD का परिमाप > आयत ABEF का परिमाप
उपपत्ति: ∆ADF में,
∠F = 90° (आयत का अन्त:कोण)
AF ⊥ EF
AF < AD (AD कर्ण है) …(1)
इसी प्रकार ∆BCE में,
∠E = 90° (आयत का बहिष्कोण = 90°)
BE ⊥ CD
BE < BC ….(2)
समीकरण (1) व (2) को जोड़ने पर
(AF + BE) < (AD + BC)
AB = EF (ABDF आयत है।)
और AB = DC (ABCD समान्तर चतुर्भुज है।)
दोनों ओर क्रमशः (AB + EF) और (AB + CD) जोड़ने पर,
AB + BE + EF + AF < AB + BC + CD + DA अतः समान्तर चतुर्भुज का परिमाप> आयत का परिमाप
इति सिद्धम.
Q2. दी गई आकृति में, भुजा BC पर दो बिन्दु D और E इस प्रकार स्थित हैं कि BD = DE = EC है। दर्शाइए। कि ar (ABD) = ar (ADE) = ar (AEC) है।
क्या आप अब उस प्रश्न का उत्तर दे सकते हैं, जो आपने इस अध्याय की ‘भूमिका’ में छोड़ दिया था कि “क्या बुधिया का खेत वास्तव में बराबर क्षेत्रफलों B वाले तीन भागों में विभाजित हो गया है?”
[टिप्पणीः ध्यान दीजिए कि BD = DE = EC लेने से ∆ABC तीन त्रिभुजों ABD, ADE और AEC में विभाजित हो जाता है जिनके क्षेत्रफल बराबर हैं। इसी प्रकार, BC को n बराबर भागों में विभाजित करके और इस भुजा को विभाजित करने वाले बिन्दुओं को सम्मुख शीर्ष A से मिला कर आप इस त्रिभुज को बराबर क्षेत्रफलों वाले n त्रिभुजों में विभाजित कर सकते हैं।]
हल-
दिया है : भुजा BC पर D और E दो बिन्दु इस प्रकार स्थित हैं कि BD = DE = EC है।
सिद्ध करना है : ar (∆ABD) = ar (∆ADE) = ar (∆AEC)
रचना : शीर्ष से BC पर शीर्षलम्ब AP खींचा। उपपत्ति: दिया है, BD = DE = EC
तीनों त्रिभुजों के आधार समान हैं। यह भी स्पष्ट है कि तीनों त्रिभुजों की एक ही ऊँचाई AP है। तब तीनों त्रिभुजों के क्षेत्रफल भी समान होंगे।
अतः ar (∆ABD) = ar (∆ADE) = ar (∆AEC)
किसी त्रिभुज के आधार को n समान भागों में विभक्त कर सम्मुख शीर्ष से मिलाने पर त्रिभुज समान n भागों में विभक्त हो जाता है।
Q3. दी गई आकृति में, ABCD, DCFE और ABFE समान्तर चतुर्भुज हैं। दर्शाइए कि
ar (ADE) = ar(BCF) है।
हल-
दिया है : दी गई आकृति में चतुर्भुज ABCD, चतुर्भुज DCFE और चतुर्भुज ABFE समान्तर चतुर्भुज हैं।
सिद्ध करना है : ar (∆ADE) = ar (∆BCF)
उपपत्ति : ABCD एक समान्तर चतुर्भुज है।
AD = BC
DCFE एक समान्तर चतुर्भुज है।
DE = CF
ABFE, एक समान्तर चतुर्भुज है।
AE = BF
अब ∆ADE तथा ∆BCF में,
AD = BC
DE = CF (अभी सिद्ध किया है)
AE = BF
∆ADE = ∆BCF (भुजा-भुजा-भुजा सर्वांगसमता से)
ar (∆ADE) = ar (∆BCF)
Q4. दी गई आकृति में, ABCD एक समान्तर चतुर्भुज है। BC को बिन्दु ९ तक इस प्रकार बढ़ाया गया है कि AD = CQ है। यदि AQ भुजा DC को P पर प्रतिच्छेद करती है तो दर्शाइए कि ar (BPC) = ar (DPQ) है। [संकेतः AC को मिलाइए।]
Q5. दी गई आकृति में, ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC का मध्य-बिन्दु है। यदि AE भुजा BC को F पर प्रतिच्छेद करती है तो दर्शाइए कि
(i) ar(∆BDE) = ar(∆ABC)
(ii) ar(∆BDE) = ar(∆BAE)
(iii) ar(∆ABC) = 2 ar(∆BEC)
(iv) ar(∆BFE) = ar(∆AFD)
(v) ar(∆BFE) = 2 ar(∆FED)
(vi) ar(∆FED) = ar(∆AFC)
[संकेतः EC और AD को मिलाइए। दर्शाइए कि BE || AC और DE || AB है, इत्यादि।]
हल-
दिया है : दी गई आकृति में ∆ABC और ∆BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC को मध्य-बिन्दु है। रेखाखण्ड AE खींचा गया है जो BC को F पर प्रतिच्छेद करता है।
Q6. चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिन्दु P पर प्रतिच्छेद करते हैं।दर्शाइए कि
ar (APB) x ar (CPD) = ar (APD) x ar (BPC) है।
[संकेतः A और C से BD पर लम्ब खींचिए।]
Q7. P और Q क्रमशः त्रिभुज ABC की भुजाओं AB और BC के मध्य-बिन्दु हैं तथा R रेखाखण्ड AP का मध्य-बिन्दु है। दर्शाइए कि :
(i) ar (∆PRQ) = ar (∆ARC)
(ii) ar (∆RQC) = ar (∆ABC)
(iii) ar (∆PBQ) = ar (∆ARC)
हल-
दिया है: ∆ABCमें भुजा AB का मध्य-बिन्दु Pऔर भुजा BC का मध्य-बिन्दु Q है।
बिन्दु R, रेखाखण्ड AP का मध्य-बिन्दु है।
सिद्ध करना है :
(i) ar (PRQ) =
ar (ARC)
Q8. दी गई आकृति में, ABC एक समकोण त्रिभुज है।
जिसका कोण A समकोण है। BCED, ACFG और ABMN क्रमशः भुजाओं BC, CA और AB पर बने वर्ग हैं। रेखाखण्ड AX ⊥ DE भुजा BC को बिन्दु Y पर मिलता है। दर्शाइए कि :
(i) ∆MBC = ∆ABD
(ii) ar (BYXD) = 2 ar (MBC)
(iii) ar (BYXD) = ar (ABMN)
(iv) ∆FCB = ∆ACE
(v) ar (CYXE) = 2 ar (FCB)
(vi) ar (CYXE) = ar (ACFG)
(vii) ar (BCED) = ar (ABMN) + ar (ACFG)
[टिप्पणीः परिणाम (vii) प्रसिद्ध (सुपरिचित) पाइथागोरस प्रमेय है। इस प्रमेय की एक सरलतम उपपत्ति आप कक्षा X में पढ़ेंगे]
हल-
दिया है : ∆ABC में ∠A समकोण है। त्रिभुज की भुजाओं AB, AC तथा BC पर क्रमशः ABMN, ACFG और BCED वर्ग बने हैं। रेखोखण्ड AXवर्ग BCED की भुजा DE पर लम्ब है, जो BC से Y पर मिलता है।
सिद्ध करना है :
((i) ∆MBC = ∆ABD
(ii) ar (BYXD) = 2 ar (MBC)
(iii) ar (BYXD) = ar (ABMN)
(iv) ∆FCB = ∆ACE
(v) ar (CYXE) = 2 ar (FCB)
(vi) ar (CYXE) = ar (ACFG)
(vii) ar (BCED) = ar (ABMN) + ar (ACFG)
उपपत्ति:
(i) ABMN एक वर्ग है।
∆MBC ,
∠MBC = 90° + ∠B
इसी प्रकार ∆ABD में,
∠ABD = 90° + ∠B
∆MBC और ∆ABD में,
∠MBC = ∠ABD