Rajasthan Board RBSE Class 10 Maths Chapter 11 समरूपता Ex 11.3

प्रश्न 1.
दो त्रिभुज ABC और PQR में 28 और BF दोनों त्रिभुजों में से दो कोणों के नाम बताइए जो बराबर होना चाहिए, ताकि ये दोनों A समरूप हो सकें। अपने उत्तर के लिए कारण भी बताइए।
हल:
दिए गए दोनों त्रिभुजों ∆ABC तथा ∆PQR में यह दिया गया है कि

\frac{A B}{P Q}=\frac{B C}{Q R}
या
\frac{A B}{B C}=\frac{P Q}{Q R}

इन त्रिभुजों में यदि ∠A = ∠P तथा ∠C =∠R हो तो ∠B = ∠Q स्वतः ही हो जायेंगे तो दो त्रिभुज समान कोणिक हो जायेंगे तथा ये दोनों ∆ABC व ∆POR समरूप हो जायेंगे।

प्रश्न 2.
त्रिभुजों ABC एवं DEF में, 2A =∠D, ∠B = ∠F हो तो क्या ∆ABC ~ ∆DEF है? अपने उत्तर के लिए कारण दीजिए।
हल:

चित्र के अनुसार ∆ABC ~ ∆DEF नहीं है क्योंकि दिए गए कोणों के क्रम में ∠A = ∠D तो ठीक है लेकिन ∠B ≠ ∠F अतः दिए गए कोणों के क्रम के अनुसार ∆ABC ~ ∆DFE होना चाहिए।

प्रश्न 3.
यदि ∆ABC ~ ∆FDE हो तो क्या  जा सकता है ? उत्तर को कारण सहित लिखिए।
हल:
प्रश्न में दिया गया है कि ∆ABC ~ ∆FDE लेकिन इसके आधार पर  \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}  नहीं लिखा जा सकता है। दिए गए अनुसार वास्तव में शीर्षों के क्रम में यह अनुपात  \frac{A B}{F D}=\frac{B C}{D E}=\frac{C A}{E F}  होना चाहिए।

प्रश्न 4.
यदि किसी त्रिभुज की दो भुजाएँ और एक कोण दूसरे त्रिभुज की दो भुजाएँ और एक कोण के क्रमशः समानुपाती एवं बराबर हों, तो दोनों त्रिभुज समरूप होते हैं। क्या यह कथन सत्य है? कारण सहित उत्तरे लिखिए।
हल:
प्रश्न में दिया गया कथन सत्य नहीं है क्योंकि दोनों त्रिभुजों में दो भुजाएँ और उनके अन्तर्गत बने कोण समान होने पर ही दोनों त्रिभुज समरूप होंगे।

प्रश्न 5.
समानकोणिक त्रिभुजों से क्या तात्पर्य है? इनमें परस्पर क्या सम्बन्ध हो सकता है?
हल:
यदि दो त्रिभुजों के संगत कोण बराबर हों तो वे दोनों त्रिभुज समानकोणिक त्रिभुज कहलाते हैं।

प्रश्न 6.
निम्न दिए गए त्रिभुजों की आकृतियों में से समरूप त्रिभुज युग्मों का चयन कीजिए और उन्हें समरूप होने की सांकेतिक भाषा में लिखिए।

हल:
(a) दी गई आकृतियों में से समरूप त्रिभुज (i) व (viii) हैं तथा इन्हें सांकेतिक भाषा में ∆ABC ~ ∆QPR लिखा जा सकता है क्योंकि यहाँ

(b) दी गई आकृतियों में से समरूप त्रिभुज (ii) व (vii) हैं तथा इन्हें सांकेतिक भाषा में ∆MPN ~ ∆ZYX लिखा जा सकता है क्योंकि यहाँ

(c) दी गई आकृतियों में से समरूप त्रिभुज (iii) व (v) हैं तथा इन्हें सांकेतिक भाषा में ∆PQR ~ ∆EFG लिखा जा सकता है क्योंकि

(d) दी गई आकृतियों में से समरूप त्रिभुज (iv) व (vi) हैं तथा इन्हें सांकेतिक भाषा में

प्रश्न 7.
आकृति में ∆PRQ ~ ∆TRS हो तो बताइए इस समरूप त्रिभुज युग्म में कौन-कौनसे कोण परस्पर समान होने चाहिए?

हल:
प्रश्न में दिए अनुसार ∆PQR ~ ∆TRS है। इन दोनों समरूप त्रिभुजों में ∠RPQ = ∠RTS तथा ∠RQP = ∠RST होने चाहिए।

प्रश्न 8.
आपको आकृति में स्थित उन दो त्रिभुजों का चयन करना है जो परस्पर समरूप हैं। यदि ∠CBE = ∠CAD है।

हल:
प्रश्न में दी गई शर्त के अनुसार,
∵ ∠CBE = ∠CAD
∴ वे ऐसे समरूप त्रिभुज ADC तथा त्रिभुज BEC होंगे अर्थात्
∆ADC ~ ∆BEC.

प्रश्न 9.
आकृति में PQ और RS समान्तर हैं, तो सिद्ध कीजिए ∆POQ ~ ∆SORI

(माध्य. शिक्षा बोर्ड, मॉडल पेपर, 2017-18)
हल:

प्रश्न 10.
90 सेमी. की लम्बाई वाली लड़की बल्ब लगे खम्भे के आधार से परे 1.2 मीटर/सेकण्ड की चाल से चल रही है। यदि बल्ब भूमि से 3.6 मीटर की ऊँचाई पर हो तो 4 सेकण्ड के बाद उस लड़की की छाया कितने मीटर होगी?
हल:
माना AB एक बल्ब लगा खम्भा है। तथा एक लड़की है जो 1.2 मी./से. की चाल से चल रही है तथा 4 सेकण्ड के पश्चात् उसकी स्थिति CD पर है तथा DE उसकी छाया है।

माना
DE = x मीटर
BD = 1.2 मीटर x 4
4.8 मीटर
अब ∆ABE तथा ∆CDE में,
∠B = ∠D = 90°
[क्योंकि खम्भा व लड़की दोनों जमीन पर ऊर्ध्वाधर हैं ।] ∠E = ∠E (उभयनिष्ठ कोण)
इसलिये AA समरूपता से
∆ABE ~ ∆CDE

∴ 4 सेकण्ड के बाद लड़की की छाया 1.6 मीटर होगी।

प्रश्न 11.
12 मीटर लम्बाई वाली ऊर्ध्वाधर स्तम्भ की भूमि पर छाया की लम्बाई 8 मीटर है, उसी समय एक मीनार की छाया की लम्बाई 56 मीटर हो तो मीनार की ऊँचाई ज्ञात कीजिए।
हल:
पहले चित्रानुसार माना AB एक ऊर्ध्वाधर स्तम्भ है तथा AC उसकी परछाईं है। पुनः दूसरे चित्रानुसार DE एक मीनार है और DF उसकी परछाईं है।

प्रश्नानुसार AB = 12 m., AC = 8 m तथा DF = 40 m
माना DE = x m., अब ∆ABC और ∆DEF में
∠A = ∠D = 90° तथा ∠C = ∠F (उन्नयन कोण सूर्य का)
अतः समरूपता की AA कसौटी से

अतः मीनार की ऊँचाई 84 m है।

प्रश्न 12.
किसी ∆ABC के शीर्ष A से उसकी सम्मुख भुजा BD पर लम्ब डालने पर AD2 = BD × DC प्राप्त होता है, तो सिद्ध कीजिए ABC एक समकोण त्रिभुज है।
हल:
त्रिभुज BDA तथा ∆ADC में

⇒ ∠A+∠B +∠C = 2∠A (दोनों पक्षों में ∠A जोड़ने पर)
⇒ 2∠A = 180°
⇒ ∠A = 90°
⇒ ∆ABC एक समकोण त्रिभुज है। (इतिसिद्धम्)

प्रश्न 13.
सिद्ध कीजिए किसी त्रिभुज की तीनों भुजाओं के मध्य बिन्दुओं को क्रमशः मिलाने पर बनने वाले चारों त्रिभुज अपने मूल त्रिभुज के समरूप होते ।
हल:
दिया है–
एक ∆ABC है जिसकी भुजाओं BC, CA और AB के मध्य बिन्दु क्रमशः D, E और F हैं। DE, EF और FD को मिलाने पर हमें निम्न चार त्रिभुज प्राप्त होते हैं|
∆AFE, ∆FED, ∆EDC तथा ∆DEF
उपपत्ति-
हम जानते हैं कि किसी त्रिभुज की। दो भुजाओं के मध्य बिन्दुओं को मिलाने वाली रेखा तीसरी भुजा के समान्तर तथा उसकी आधी होती है। स्पष्ट है कि AABC में E और F क्रमशः भुजाओं। AC और AB के मध्य-बिन्दु हैं।

∴ FE || BC
⇒ ∠AFE =∠B (संगत कोण)
अतः ∆AFE और ∆ABC में
∠AFE = ∠B
तथा∠A =∠A
∴ ∆AFE ~ ∆ABC (समरूपता की AA कसौटी से)
इसी प्रकार चूँकि DE || AB और DF || CA है। अतः ∆EDC ~ ∆ABC और ∆FBD ~ ∆ABC होगा। अब हमें यह सिद्ध करना है कि ∆DEF भी ∆ABC के समरूप होगा। चूँकि E और F क्रमशः भुजाओं AC और AB के मध्य बिन्दु हैं।
\therefore \quad \mathrm{FE}=\frac{1}{2} \mathrm{BC}
इसी प्रकार DE =  \frac{1}{2}  AB तथा DF =  \frac{1}{2}  AC
अतः  \frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{DF}}{\mathrm{AC}}=\frac{\mathrm{EF}}{\mathrm{BC}}=\frac{1}{2}
⇒ ∆DEF और ∆ABC की भुजाएँ समानुपाती हैं।
⇒ ∆DEF ~ ∆ABC
अतः ∆AFE, ∆FBD, ∆EDC और ∆DEF प्रत्येक ∆ABC के समरूप है। ( इतिसिद्धम् )

प्रश्न 14.
आकृति दर्शाए अनुसार यदि AB ⊥ BC, DC ⊥ BC और DE ⊥ AC हो तो सिद्ध कीजिए ∆CED ~ ∆ABC

हल:
दिया है
AB ⊥ BC
DC ⊥ BC एवं
DE ⊥ AC
सिद्ध करना है-
∆CED ~ ∆ABC.
उपपत्ति-
∆ABC में
∠BAC +∠BCA = 90° ………….(1)
∠BCA + ∠ECD = 90° ………..(2) (DC ⊥ BC)
समीकरण (1) व (2) से,
∠BAC = ∠ECD …………………(3)
∆CED व ∆ABC में
∠CED = ∠ABC (प्रत्येक 90°)
∠ECD = ∠BAC (समीकरण 3 से)
∴ ∆CED ~ ∆ABC (कोण-कोण सर्वांगसमता से)

प्रश्न 15.
∆ABC की भुजा BC के मध्य बिन्दु D है। यदि AD का समद्विभाजन करती हुई एक रेखा B से इस प्रकार खींची जाए कि वह भुजा AD को E पर काटते हुए AC को X पर काटे तो सिद्ध कीजिए  \frac{E X}{B E}=\frac{1}{2}  है।
हल:
दिया है-
बिन्दु D, BC का मध्य बिन्दु है तथा E, AD का मध्य बिन्दु है।

सिद्ध करना है-
\frac{E X}{B E}=\frac{1}{3}
रचना-
बिन्दु D से, DF || BX.
उपपत्ति-
ΔAEX एवं ΔADF में,
∠EAX = ∠DAF (उभयनिष्ठ)
∠AXE = ∠AFD (सम्पूरक कोण)

0:00
0:00

tipobet-onwin-güvenilir casino siteleri-güvenilir casino siteleri-slot siteleri-yeni slot siteleri-sahabet-matadorbet-sweet bonanza-aviator-güvenilir casino siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler 2026-deneme bonusu veren yeni siteler-deneme bonusu-bahis siteleri-güvenilir bahis siteleri-aviator-slot siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-yeni slot siteleri-matadorbet-sahabet-yeni slot siteleri-deneme bonusu veren siteler 2026-matadorbet-bahis siteleri-tipobet-sahabet-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-onwin-onwin-tipobet-casino siteleri-sweet bonanza-slot siteleri-deneme bonusu-güvenilir bahis siteleri-sweet bonanza-aviator-casino siteleri-bahis siteleri-deneme bonusu veren siteler 2026-