Chapter 4 दो चरों वाले रैखिक समीकरण Ex 4.2

प्रश्न 1.
निम्नलिखित विकल्पों में कौनसा विकल्प सत्य है और क्यों?
y = 3x + 5 का
(i) एक अद्वितीय हल है
(ii) केवल दो हल हैं
(iii) अपरिमित रूप से अनेक हल हैं।
हल:
प्रश्न में दिए गए विकल्पों में से (iii) ही सत्य है क्योंकि x के प्रत्येक मान के लिए का भी एक संगत मान होता है तथा विलोमतः भी।
अतः उपर्युक्त दिए गए समीकरण के अपरिमित रूप से अनेक हल हैं।

प्रमाणीकरण – (i) माना कि x = 0 तो
y = 3.0 + 5
⇒ y = 0 + 5
⇒ y = 5
अतः इस समीकरण का एक हल x = 0, y = 5 है

(ii) माना कि x = 1 हो तो
y = 3.1 +5
⇒ y = 3 + 5
⇒ y = 8
अतः इस समीकरण का एक हल x = 1, y = 8 भी है।

(iii) माना कि x = – 3 तो
y = 3. (-3) +5
⇒ y = -9 + 5
⇒ y = -4
अतः इस समीकरण का हल x = -3 व y = – 4 भी है।
इसी प्रकार यह कहा जा सकता है कि x या y के विभिन्न मान प्रतिस्थापित करके उसके संगत y या x का मान ज्ञात कर दी गई समीकरण के अपरिमित हल प्राप्त कर सकते हैं।

प्रश्न 2.
निम्नलिखित समीकरणों में से प्रत्येक समीकरण के चार हल लिखिए
(i) 2x + y = 7
हल:
प्रश्नानुसार 2x + y = 7
या y = 7 – 2x
यदि x = 0 हो तो y = 7 – 2.0 = 7 – 0 = 7
जब x = 1 हो तो y = 7 – 2.1 = 7 – 2 = 5
जब x = 2 हो तो y = 7 – 2.2 = 7 – 4 = 3
जब x = – 1 हो तो) = 7 – 2 . (- 1) = 7 + 2 = 9
अतः समीकरण 2x + 1 = 7 के अपरिमित रूप से अनेक हलों में से चार हल (0. 7), (1, 5), (2, 3) तथा (- 1, 9) हैं।

प्रश्न 3.
बताइए कि निम्नलिखित हलों में कौन-कौन समीकरण x – 2y = 4 के हल हैं और कौन-कौन हल नहीं हैं
(i) (0, 2)
हल:
प्रश्नानुसार दिए गए समीकरण में (0, 2) अर्थात् x = 0 तथा y = 2 रखने पर
∴ L.H.S. = x – 2y
= 0 – 2 . (2)
= -4 ≠ R.H.S.
∴ x = 0 तथा y = 2 समीकरण x – 2y = 4 का हल नहीं है।

(ii) (2, 0)
हल:
प्रश्नानुसार दिए गए समीकरण में (2, 0) अर्थात् x = 2 तथा y = 0 रखने पर
∴ L.H.S. = x – 2y
= 2 – 2.0
= 2 ≠ R.H.S.
∴ x = 2 तथा y = 0 समीकरण x – 2y = 4 का हल नहीं है।

(iii) (4, 0)
हल:
प्रश्नानुसार दिए गए समीकरण में (4,0) अर्थात् x = 4 एवं y = 0 रखने पर
∴ L.H.S. = x – 2y
= 4 – 2.0
= 4 ≠ R.H.S.
∴ x = 4 तथा y = 0 समीकरण x – 2y = 4 का हल है।

(iv) (√2, 4√2)
हल:
प्रश्नानुसार दिए गए समीकरण में (√2, 4√2) अर्थात् x = 2 तथा y = 4√2 रखने पर
L.H.S. = x – 2y
= √2 – 2 . 4√2
= √2 – 8√2
= -7√2 ≠ R.H.S.
∴ x = √2 तथा y = 4√2 समीकरण x – 2y = 4 का हल नहीं है।

(v) (1, 1)
हल:
प्रश्नानुसार दिए गए समीकरण में (1, 1) अर्थात् x = 1 तथा y = 1 रखने पर
L.H.S. = x – 2y
= 1 – 2.1
= -1 ≠ R.H.S.
∴ x = 1 तथा y = 1 समीकरण x – 2y = 4 का हल नहीं है।

प्रश्न 4.
k का मान ज्ञात कीजिए जबकि x = 2, y = 1 समीकरण 2x + 3y = k का एक हल हो।
हल:
यदि x = 2 तथा y = 1 समीकरण 2x + 3y = k का एक हल है तो ये मान रखने पर अवश्य ही समीकरण सन्तुष्ट होगा
अर्थात् 2x + 3y = k
k = 2x + 3y
= 2 . (2) + 3 (1)
= 4 + 3
=7 अत: k का अभीष्ट मान 7 है।

Leave a Reply

Your email address will not be published. Required fields are marked *

0:00
0:00

slot siteleri-sahabet-matadorbet-sweet bonanza-deneme bonusu veren siteler 2026-radissonbet-kaçak iddaa-aviator-trwin-deneme bonusu veren yeni siteler-superbahis-matadorbet-sahabet-matadorbet-superbet-deneme bonusu veren yeni siteler-slotday-xslot-kralbet-bahibom-anadoluslot-slotday-radissonbet-casibom-casinofast-cratosroyalbet-asyabahis-asyabahis-betboo-betboo-youwin-youwin-superbahis-oleybet-1xbet-betmatik-artemisbet-bets10-deneme bonusu veren siteler 2026-tarafbet-baywin-superbahis-mersobahis-slotella-yeni slot siteleri-ritzbet-slot siteleri-canlı bahis siteleri-hitbet-celtabet-pusulabet-betano-betano-betewin-1xbet-mariobet-betmatik-betmatik-betenerji-misty-misty-güvenilir casino siteleri-misli-bahis siteleri-dedebet-bahsegel-bahsegel-meritking-holiganbet-holiganbet-bets10-ramadabet-bets10-casibom-casibom-ngsbahis-jojobet-marbahis-marbahis-asyabahis-tarafbet-yeni slot siteleri-superbahis-superbahis-oleybet-oleybet-misli-1xbet-artemisbet-slot siteleri-limanbet-limanbet-piabellacasino-baywin-mersobahis-almanbahis-pincocasino-pincocasino-savoycasino-exonbet-anadoluslot-betano-betano-madridbet-mariobet-mariobet-goldenbahis-betmatik-betenerji-misty-misty-betmatik-mostbet-bettilt-maxwin-meritking-venombet-holiganbet-betturkey-matadorbet-goldenbahis-cratosroyalbet-grandpashabet-casibom-jojobet-jojobet-bahibom-venombet-sahabet-aviator-aviator-bahis siteleri-superbet-grandpashabet-casino siteleri-betkom-palacebet-dedebet-deneme bonusu-spinco-deneme bonusu veren siteler-kaçak bahis-deneme bonusu veren siteler 2026-deneme bonusu veren siteler 2026-betkom-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-casinofast-tipobet-casibom-maxwin-deneme bonusu-spinco-betwild-güvenilir bahis siteleri-sweet bonanza-sweet bonanza-misli-betsin-stake-sweet bonanza-asyabahis-ramadabet-betboo-xslot-superbahis-deneme bonusu veren siteler-oleybet-kaçak iddaa-misli-deneme bonusu veren yeni siteler-damabet-pusulabet-artemisbet-limanbet-piabellacasino-1xbet-betewin-betsin-canlı casino siteleri-betturkey-tokyobet-meritbet-pincocasino-pincocasino-gates of olympus-royalbet-ritzbet-deneme bonusu-pusulabet-pusulabet-betenerji-misty-misty-mostbet-mostbet-bettilt-bahsegel-nerobet-meritking-meritking-trwin-holiganbet-matadorbet-kaçak bahis-canlı bahis siteleri-betwild-jojobet-sahabet-aviator-marsbahis-palacebet-enbet-mariobet-damabet-exonbet-deneme bonusu veren yeni siteler-tokyobet-sweet bonanza-güvenilir casino siteleri-casino siteleri-deneme bonusu veren yeni siteler-kralbet-güvenilir bahis siteleri-slotella-royalbet-aviator-betturkey-canlı casino siteleri-sweet bonanza-slot siteleri-kaçak iddaa-kaçak iddaa-kaçak bahis-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir bahis siteleri-gates of olympus-gates of olympus-deneme bonusu veren yeni siteler-deneme bonusu veren siteler 2026-casino siteleri-canlı casino siteleri-canlı bahis siteleri-bahis siteleri-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-