Rajasthan Board RBSE Class 10 Maths Chapter 10 बिन्दु पथ Ex 10.1

प्रश्न 1.
निम्नलिखित कथनों में से सत्य या असत्य लिखिए और अपने उत्तर का औचित्य भी दीजिए

  1. किसी रेखा से समान दूरी पर स्थित बिन्दुओं का समुच्चय एक रेखा होती
  2. एक वृत्त उन बिन्दुओं का बिन्दुपथ है जो किसी दिए गए बिन्दु से नियत दूरी पर स्थित है।
  3. तीन दिए गए बिन्दु संरेख तभी होंगे जब वह एक रेखा के बिन्दुओं के समुच्चय के अवयव नहीं हों।
  4. दो रेखाओं से समदूरस्थ बिन्दुओं का बिन्दुपथ दोनों रेखाओं के समान्तर रेखा होगी।
  5. दो दिए गए बिन्दुओं से समदूरस्थ बिन्दु का बिन्दुपथ दोनों बिन्दुओं को मिलाने वाली रेखा का लम्बअर्द्धक होता है।

उत्तर:

  1. असत्य है क्योंकि किसी रेखा से समान दूरी पर स्थित बिन्दुओं का बिन्दुपथ उसके दोनों ओर उस रेखा के समान्तर रेखाएँ होती हैं।
  2. सत्य है। एक वृत्त उन बिन्दुओं का बिन्दु पथ है जो किसी दिये गये बिन्दु से नियत दूरी पर स्थित है। ये दिया गया बिन्दु तथा नियत दूरी त्रिज्या होती है।
  3. असत्य है क्योंकि तीन दिए गए बिन्दु संरेख तभी होंगे जब तीनों उस एक रेखा पर स्थित हों जिसके सभी बिन्दुओं के समुच्चयों में से तीनों दिए गए बिन्दु भी समुच्चय के अवयव हों।
  4. असत्य है क्योंकि यह निर्भर करता है। दोनों रेखाएँ किस स्थिति में स्थित हैं। यदि दोनों समान्तर हों तो उनके समान्तर रेखा होगी और यदि प्रतिच्छेदी रेखाएँ हों तो प्रतिच्छेदी बिन्दुओं पर बनने वाले.कोण के अर्द्धक वाली रेखा होगी।
  5. सत्य है। दो दिये गये बिन्दुओं से समदूरस्थ बिन्दु का बिन्दु पथ दोनों बिन्दुओं को मिलाने वाली रेखा का लम्ब अर्द्धक (लम्ब समद्विभाजक) होता है।

प्रश्न 2.
एक चतुर्भुज के विकर्ण एक-दूसरे को समद्विभाजित करते हैं। सिद्ध कीजिए कि यह चतुर्भुज समान्तर चतुर्भुज है।
हल:
दिया है–
एक चतुर्भुज ABCD जिसके विकर्ण AC और BD बिन्दु O पर।
Pसमद्विभाजित करते हैं, अर्थात्
OA = OC और OB = OD


सिद्ध करना है- ABCD एक समान्तर चतुर्भुज है।
उत्पत्ति- ΔAOB और Δ COD में
OA = OC (दिया है)
∠AOB = ∠COD (शीर्षाभिमुख कोण) और
OB = OD (दिया है)।
अतः भुजा-कोण-भुजा सर्वांगसमता गुणधर्म से ΔAOB = ΔCOD (SAS सर्वांगसमता से)
अतः सर्वांगसम त्रिभुजों के संगत कोण समान होंगे। अर्थात्। ∠OAB = ∠OCD
परन्तु यह तिर्यक रेखा AC द्वारा रेखाओं AB और CD पर बने एकान्तर कोण हैं।
अतः AB || CD
इसी प्रकार AD || BC
अतः ABCD एक समान्तर चतुर्भुज है। इतिसिद्धम्

प्रश्न 3.
तीन असंरेख बिन्दुओं A, B और C के समदूरस्थ बिन्दुओं का। बिन्दुपथ क्या होगा? अपने उत्तर का कारण स्पष्ट कीजिए।
हल:
दिया है–
तीन असंरेख बिन्दु A, B और C हैं।
सिद्ध करना है- A, B तथा C से समदूरस्थ बिन्दुओं का बिन्दुपथ।
रचना- AB, BC तथा CA को मिलाइये तथा AB, BC व CA के लम्ब, समद्विभाजक OF, OD तथा OE खींचें जो O पर प्रतिच्छेद करते हैं।

उपपत्ति- चूँकि 0, BC के लम्ब सम-द्विभाजक पर स्थित है।
∴ OB = OC ………………..(1)
इसी प्रकार OA = OB ……………..(2)
समीकरण (1) तथा (2) से
OA = OB = OC
∴केवल O बिन्दु ही A, B, C से समदूरस्थ है।
अतः हम कह सकते हैं कि अभीष्ट बिन्दु उस वृत्त का केन्द्र है जो ज्ञात तीन असंरेख बिन्दुओं से गुजरता है। इसे वृत्त का परिकेन्द्र कहते हैं। उत्तर

प्रश्न 4.
तीन समरेख बिन्दुओं से समदूरस्थ बिन्दुओं को बिन्दुपथ क्या होगा? अपने उत्तर का कारण स्पष्ट कीजिए।
हल:
कल्पना कीजिये कि l एक सरल रेखा है और उस पर A, B तथा C तीन भिन्नl बिन्दु हैं। हमें तीनों बिन्दुओं से समदूरस्थ बिन्दुओं का बिन्दुपथ ज्ञात करना है।

मान लीजिये कोई बिन्दु P, बिन्दुओं A, B और C से समदूरस्थ है।
परीक्षण
∵ P, बिन्दुओं A तथा B से समदूरस्थ है।
∴ P, AB के लम्ब समद्विभाजक m पर होगा।
∴ m ⊥ l
∵ P, बिन्दुओं B और C से भी समदूरस्थ है।
∴ P, BC के लम्बे समद्विभाजक n पर होगा।
जिससे
∵ n ⊥ l
∴ m ⊥ l और n ⊥ l
∴ m || n
∴ m ∩ n = Φ अर्थात् रेखाओं m तथा n का कोई उभयनिष्ठ बिन्दु नहीं, अतःP ऐसा कोई बिन्दु नहीं है जो A, B और C से समदूरस्थ हो। अतः ऐसे बिन्दु का अस्तित्व नहीं है। उत्तर

प्रश्न 5.
सिद्ध कीजिए कि A और B बिन्दुओं से होकर जाने वाले वृत्तों के केन्द्रों का बिन्दुपथ रेखाखण्ड AB का लम्बअर्द्धक है।
हल:
दिया है–
बिन्दु A और B दो दिए हुए बिन्दु हैं जिनसे जाने वाले वृत्तों के केन्द्र P, Q और R हैं।
सिद्ध करना है- P, Q और R का बिन्दु पथ, AB, का लम्ब समद्विभाजक है।

उपपत्ति-
∵ बिन्दु P ऐसे वृत्त का केन्द्र है जो बिन्दुओं A तथा B से जाता है।
∴ P, A और B से समदूरस्थ है। क्योंकि PA = PB (वृत्त की त्रिज्याएँ हैं)।
∴ P, AB के लम्ब समद्विभाजक पर है। इसी प्रकार, Q तथा R भी ऐसे वृत्तों के केन्द्र हैं जो बिन्दुओं A तथा B (दोनों) से होकर जाते हैं अतःQ तथा R, बिन्दुओं A तथा B से समदूरस्थ हैं।
∴ Q तथा R, AB के लम्ब समद्विभाजक पर हैं।
∴ P Q तथा R, रेखाखण्ड AB के लम्बे समद्विभाजक पर हैं।
∴ P, Q तथा R, वृत्त-केन्द्रों का बिन्दुपथ AB का लम्बे समद्विभाजक है। ( इतिसिद्धम् )

प्रश्न 6.
दी गई आकृति में उभयनिष्ठ आधार BC पर रेखा BC के विपरीत ओर दो समद्विबाहु त्रिभुज ΔPBC और ΔQBC स्थित हैं। सिद्ध कीजिए कि P और Q को मिलाने वाली रेखा, BC को समकोण पर समद्विभाजित करती है।

हल:
दिया है-दो समद्विबाहु APBC वे
ΔQBC आधार BC के विपरीत और स्थित हैं।
तथा BP = PC
BQ= OC
तथा PQ और BC बिन्दु 0 पर प्रतिच्छेद करती हैं। B0 = CO तथा ∠BOP = 90°

उपपत्ति- ΔPBQ तथा ΔPCQ में,
PB = PC (दिया है)
BQ= CQ (दिया है)
PQ= PQ (उभयनिष्ठ भुजा)
∴ ΔPBQ ≅ ΔPCQ (SSS नियम से)
∴ ∠BPQ = ∠CPQ (CPCT से)
ΔBPO = ΔCPO
∴ ΔBPO ≅ ΔCPO में।
BP = CP दिया है।
∠BPO=∠CPO (समी, 1 से)
PO = PO उभयनिष्ठ भुजा
∴ ΔBPO ≅ ΔCPO (SAS नियम से)

प्रश्न 7.
दी गई आकृति में उभयनिष्ठ आधार QR पर एक ही ओर दो समद्विबाहु त्रिभुज PQR और SQR स्थित हैं। सिद्ध कीजिए कि SP रेखा QR की लम्बअर्द्धक है।
हल:
दिया गया है–
दी गई आकृति के अनुसार दो समद्विबाहु त्रिभुज PQR और SQR Q4 हैं। इन दोनों का उभयनिष्ठ आधार QR है।

यहाँ पर QP = PR और QS = SR है।
सिद्ध करना है- रेखा SP, आधार QR की लम्बअर्द्धक है।
रचना- रेखा SP, QR को M बिन्दु पर प्रतिच्छेद करती है।
उपपत्ति- हम जानते हैं कि उस बिन्दु का बिन्दुपथ, जो दिये हुए बिन्दुओं से समदूरस्थ हो, इन दो बिन्दुओं को मिलाने वाले रेखाखण्ड का लम्बअर्द्धक होता है। अतः
QP = PR के बिन्दु P का आधार QR के लम्बअर्द्धक पर स्थित होगा।
QS = SR बिन्दु S का आधार QR के लम्बअर्द्धक पर स्थित होगा।
अतः हम कह सकते हैं कि रेखाखण्ड SP आधार QR के लम्बअर्द्धक पर स्थित है अर्थात् यह भी कहा जा सकता है कि SP रेखा QR की लम्बअर्द्धक है। (इतिसिद्धम्)

प्रश्न 8.
दी गई आकृति में ∠P का अर्द्धक PS, भुजा QR को S बिन्दु पर प्रतिच्छेद करता है। SN ⊥ PQ एवं SM ⊥ PR खींचे गए हैं। सिद्ध कीजिए कि SN = SM

हल:
प्रश्नानुसार ∠P का अर्द्धक PS है।
अतः बिन्दु S, ∠QPR की भुजाओं PQ और PR से समान दूरी पर है। यहाँ SN बिन्दु S की PQ से और SM, बिन्दु S की PR से दूरी है।
अतः SN = SM.

प्रश्न 9.
दी गई आकृति में ∠ABC दिया गया है। BA और BC से समदूरस्थ तथा ∠ABC के अन्तः भाग में किसी बिन्दुओं का बिन्दुपथ ज्ञात कीजिए।

हल:

BA तथा BC से समदूरस्थ तथा ∠ABC के अन्त भाग में स्थित बिन्दुओं का बिन्दु पथ दोनों रेखाओं के उभयनिष्ठ बिन्दु पर बने कोण ∠ABC का समद्विभाजक होगा।

0:00
0:00

slot siteleri-sahabet-matadorbet-sweet bonanza-deneme bonusu veren siteler 2026-radissonbet-kaçak iddaa-aviator-trwin-deneme bonusu veren yeni siteler-superbahis-matadorbet-sahabet-matadorbet-superbet-deneme bonusu veren yeni siteler-slotday-xslot-kralbet-bahibom-anadoluslot-slotday-radissonbet-casibom-casinofast-cratosroyalbet-asyabahis-asyabahis-betboo-betboo-youwin-youwin-superbahis-oleybet-1xbet-betmatik-artemisbet-bets10-deneme bonusu veren siteler 2026-tarafbet-baywin-superbahis-mersobahis-slotella-yeni slot siteleri-ritzbet-slot siteleri-canlı bahis siteleri-hitbet-celtabet-pusulabet-betano-betano-betewin-1xbet-mariobet-betmatik-betmatik-betenerji-misty-misty-güvenilir casino siteleri-misli-bahis siteleri-dedebet-bahsegel-bahsegel-meritking-holiganbet-holiganbet-bets10-ramadabet-bets10-casibom-casibom-ngsbahis-jojobet-marbahis-marbahis-asyabahis-tarafbet-yeni slot siteleri-superbahis-superbahis-oleybet-oleybet-misli-1xbet-artemisbet-slot siteleri-limanbet-limanbet-piabellacasino-baywin-mersobahis-almanbahis-pincocasino-pincocasino-savoycasino-exonbet-anadoluslot-betano-betano-madridbet-mariobet-mariobet-goldenbahis-betmatik-betenerji-misty-misty-betmatik-mostbet-bettilt-maxwin-meritking-venombet-holiganbet-betturkey-matadorbet-goldenbahis-cratosroyalbet-grandpashabet-casibom-jojobet-jojobet-bahibom-venombet-sahabet-aviator-aviator-bahis siteleri-superbet-grandpashabet-casino siteleri-betkom-palacebet-dedebet-deneme bonusu-spinco-deneme bonusu veren siteler-kaçak bahis-deneme bonusu veren siteler 2026-deneme bonusu veren siteler 2026-betkom-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-casinofast-tipobet-casibom-maxwin-deneme bonusu-spinco-betwild-güvenilir bahis siteleri-sweet bonanza-sweet bonanza-misli-betsin-stake-sweet bonanza-asyabahis-ramadabet-betboo-xslot-superbahis-deneme bonusu veren siteler-oleybet-kaçak iddaa-misli-deneme bonusu veren yeni siteler-damabet-pusulabet-artemisbet-limanbet-piabellacasino-1xbet-betewin-betsin-canlı casino siteleri-betturkey-tokyobet-meritbet-pincocasino-pincocasino-gates of olympus-royalbet-ritzbet-deneme bonusu-pusulabet-pusulabet-betenerji-misty-misty-mostbet-mostbet-bettilt-bahsegel-nerobet-meritking-meritking-trwin-holiganbet-matadorbet-kaçak bahis-canlı bahis siteleri-betwild-jojobet-sahabet-aviator-marsbahis-palacebet-enbet-mariobet-damabet-exonbet-deneme bonusu veren yeni siteler-tokyobet-sweet bonanza-deneme bonusu veren siteler-güvenilir casino siteleri-casino siteleri-deneme bonusu veren yeni siteler-kralbet-güvenilir bahis siteleri-slotella-royalbet-aviator-betturkey-canlı casino siteleri-sweet bonanza-slot siteleri-kaçak iddaa-kaçak iddaa-kaçak bahis-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir bahis siteleri-gates of olympus-gates of olympus-deneme bonusu veren yeni siteler-deneme bonusu veren siteler 2026-casino siteleri-canlı casino siteleri-canlı bahis siteleri-bahis siteleri-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-