Rajasthan Board RBSE Class 10 Maths Chapter 11 समरूपता Ex 11.4

प्रश्न 1.
निम्न के उत्तर सत्य एवं असत्य में देना है। अपने उत्तर का कारण भी लिखिए (यदि सम्भव हो)
(i) दो समरूप त्रिभुजों की संगत भुजाओं को अनुपात 4 : 9 है तो इन त्रिभुजों के क्षेत्रफलों का अनुपात 4 : 9 है।
(ii) दो त्रिभजों क्रमशः ABC व DEF में यदि

RBSE Solutions for Class 10 Maths Chapter 11 समरूपता Ex 11.4 1
\frac{A B^{2}}{D E^{2}}=\frac{9}{4}  है तो ΔABC = ADEF होगा।
(iii) दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी भुजाओं के वर्गों के समानुपाती होता है।
(iv) ΔABC एवं ΔAXY समरूप हों और उनके क्षेत्रफलों का मान समान हो तो XY एवं BC सम्पाती भुजाएँ हो सकती हैं।
हल:
(i)


संगत भुजाओं का अनुपात 3 : 2 है जबकि सर्वांगसमता के लिये यह अनुपात 1: 1 होता है।
अतः कथन असत्य है।
(iii) यह दिया गया कथन भी असत्य है क्योंकि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात संगत भुजाओं के वर्गों के समानुपाती नहीं अपितु बराबर होता है।
(iv) ΔABC ~ ΔAXY समरूप है।

इसी प्रकार BC = XY और AC = AY
अतः कथन सत्य है।

प्रश्न 2.
यदि ΔABC ~ ΔDEF और इनके क्षेत्रफल क्रमशः 64 वर्ग सेमी. और 121 वर्ग सेमी. हैं यदि EF = 15.4 सेमी. हो तो BC ज्ञात कीजिए।
हल:
ΔABC ~ ΔDEE, ΔABC का क्षेत्रफल = 64 cm और ADEF का क्षेत्रफल = 121 cm2 और EF = 15.4 cm2 है।

[∵ हम जानते हैं कि यदि दो त्रिभुज समरूप हों तो उनके क्षेत्रफलों का अनुपात संगत भुजाओं के वर्गों के अनुपात के बराबर होता है।]

प्रश्न 3.
एक ही आधार BC पर दो त्रिभुज ABC एवं DBC बने हैं। यदि AD व BC परस्पर O पर प्रतिच्छेद करें तो सिद्ध कीजिए

हल:
दिया है-
ΔABC और ΔDBC एक ही आधार BC पर स्थित बने हुए दो त्रिभुज हैं। AD, BC को 0 पर प्रतिच्छेद करता है।

सिद्ध करना है-
\frac{a r(\mathrm{ABC})}{a r(\mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}
रचना-
AL ⊥ BC, DM ⊥ BC खींचिए।
उपपत्ति-
ΔALO और ΔDMO में,

प्रश्न 4.
निम्न प्रश्नों के हल ज्ञात कीजिए
(i) ΔABC में DE || BC एवं AD: DB = 2: 3 हो तो ΔADE एवं ΔABC के क्षेत्रफलों के अनुपात ज्ञात कीजिए।
(ii) रेखाखण्ड AB के बिन्दु A व B पर PB और QA लम्ब है। यदि P व Q, AB के दोनों ओर स्थित हों और P व Q को मिलाने पर वह AB को O पर प्रतिच्छेद करे तथा PO= 5 सेमी., QO = 7 सेमी., ΔPOB का क्षेत्रफल 150 सेमी. हो तो ΔQOA का क्षेत्रफल ज्ञात कीजिए।
(iii) आकृति में x का मान a, b एवं c के पदों में ज्ञात कीजिए।

हल:

[त्रिभुज समरूप हो तो उन त्रिभुजों का क्षेत्रफल उनकी भुजाओं के वर्गों के अनुपात के बराबर होता है ।]
RBSE Solutions for Class 10 Maths Chapter 11 समरूपता Ex 11.4 12

प्रश्न 5.
ΔABC में ∠B = 90° हो एवं BD कर्ण AC पर लम्बे हो तो सिद्ध कीजिए ΔADB ~ ΔBDC
हल:
दिया है-
एक समकोण त्रिभुज ABC है जिसमें ∠ABC = 90° है तथा BD I AC है।
सिद्ध करना है-
ΔADB ~ ΔBDC
उपपत्ति-
स्पष्ट है कि ∠ABD + ∠DBC = 90°
[∵ ∠B = 90°]

तथ ∠C + ∠DBC + ∠BDC = 180°
(त्रिभुज BCD में कोण योग गुणधर्म से)
⇒ ∠C + ∠DBC + 90°= 180°
⇒ ∠C + ∠DBC = 90°
परन्तु ∠ABD + ∠DBC = 90°
∴ ∠ABD + ∠DBC = 2C + ∠DBC
⇒ ∠DBC + 2C = ∠ABD + ∠DBC
⇒ ∠ABD = ∠C ……(i)
अतः ΔADB और ABDC में।
∠ADB = ∠BDC = 90° (प्रत्येक कोण 90° के बराबर)
अतः समरूपता की कसौटी से
ΔADB ~ ΔBDC (इतिसिद्धम् )

प्रश्न 6.
सिद्ध कीजिए कि वर्ग की एक भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का आधा होता है।
हल:
दिया है-
एक वर्ग ΔBCD है जिसकी भुजा BC पर समबाहु त्रिभुज BCE तथा विकर्ण AC पर समबाहु त्रिभुज ACF बनाया गया है।
सिद्ध करना है-
a r(\Delta B C \mathbf{E})=\frac{1}{2} a r(\Delta A C F)
उपपत्ति-
चूँकि ΔBCE और ΔACF दोनों ही समबाहु त्रिभुज हैं।
∴ ΔBCE ~ ΔACF [∵ दोनों त्रिभुजों का प्रत्येक कोण 60° है अतः दोनों त्रिभुज समानकोणीय हैं।]

0:00
0:00

tipobet-onwin-güvenilir casino siteleri-güvenilir casino siteleri-slot siteleri-yeni slot siteleri-sahabet-matadorbet-sweet bonanza-aviator-güvenilir casino siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler 2026-deneme bonusu veren yeni siteler-deneme bonusu-bahis siteleri-güvenilir bahis siteleri-aviator-slot siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-yeni slot siteleri-matadorbet-sahabet-yeni slot siteleri-deneme bonusu veren siteler 2026-matadorbet-bahis siteleri-tipobet-sahabet-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-onwin-onwin-tipobet-casino siteleri-sweet bonanza-slot siteleri-deneme bonusu-güvenilir bahis siteleri-sweet bonanza-aviator-casino siteleri-bahis siteleri-deneme bonusu veren siteler 2026-