Chapter 12 Algebraic Expressions
Very Short Answer Type
  Question 1.
  
  Identify in the given expressions, terms which are not constants. Give their numerical coefficients.
  
  (i) 5x – 3
  
  (ii) 11 – 2y2
  
  (iii) 2x – 1
  
  (iv) 4x2y + 3xy2 – 5
  
  Solution:
  
  
 

   Question 4.   
   Classify the following into monomials, binomial and trinomials.   
   (i) -6   
   (ii) -5 + x   

  (iv) 6x2 + 5x – 3   
   (v) z2 + 2   
   Solution:   
   (i) -6 is monomial   
   (ii) -5 + x is binomial   

   (iv) 6x2 + 5x – 3 is trinomial   
   (v) z2 + z is binomial 
  Question 5.
  
  Draw the tree diagram for the given expressions:
  
  (i) -3xy + 10
  
  (ii) x2 + y2
  
  Solution:
  
   

  Question 7.
  
  Add:
  
  (i) 3x2y, -5x2y, -x2y
  
  (ii) a + b – 3, b + 2a – 1
  
  Solution:
  
  (i) 3x2y, -5x2y, -x2y
  
  = 3x2y + (-5x2y) + (-x2y)
  
  = 3x2y – 5x2y – x2y
  
  = (3 – 5 – 1 )x2y
  
  = -3x2y
  
  (ii) a + b – 3, b + 2a – 1
  
  = (a + b – 3) + (b + 2a – 1)
  
  = a + b – 3 + b + 2a – 1
  
  = a + 2a + b + b – 3 – 1
  
  = 3a + 2b – 4
  Question 8.
  
  Subtract 3x2 – x from 5x – x2.
  
  Solution:
  
  (5x – x2) – (3x2 – x)
  
  = 5x – x2 – 3x2 + x
  
  = 5x + x – x2 – 3x2
  
  = 6x – 4x2
  Question 9.
  
  Simplify combining the like terms:
  
  (i) a – (a – b) – b – (b – a)
  
  (ii) x2 – 3x + y2 – x – 2y2
  
  Solution:
  
  (i) a – (a – b) – b – (b – a)
  
  = a – a + b – b – b + a
  
  = (a – a + a) + (b – b – b)
  
  = a – b
  
  (ii) x2 – 3x + y2 – x – 2y2
  
  = x2 + y2 – 2y2 – 3x – x
  
  = x2 – y2 – 4x
Short Answer Type
  Question 10.
  
  Subtract 24xy – 10y – 18x from 30xy + 12y – 14x.
  
  Solution:
  
  (30xy + 12y – 14x) – (24xy – 10y – 18x)
  
  = 30xy + 12y – 14x – 24xy + 10y + 18x
  
  = 30xy – 24xy + 12y + 10y – 14x + 18x
  
  = 6xy + 22y + 4x
  Question 11.
  
  From the sum of 2x2 + 3xy – 5 and 7 + 2xy – x2 subtract 3xy + x2 – 2.
  
  Solution:
  
  Sum of the given term is (2x2 + 3xy – 5) + (7 + 2xy – x2)
  
  = 2x2 + 3xy – 5 + 7 + 2xy – x2
  
  = 2x2 – x2 + 3xy + 2xy – 5 + 7
  
  = x2 + 5xy + 2
  
  Now (x2 + 5xy + 2) – (3xy + x2 – 2)
  
  = x2 + 5xy + 2 – 3xy – x2 + 2
  
  = x2 – x2 + 5xy – 3xy + 2 + 2
  
  = 0 + 2xy + 4
  
  = 2xy + 4
  Question 12.
  
  Subtract 3x2 – 5y – 2 from 5y – 3x2 + xy and find the value of the result if x = 2, y = -1.
  
  Solution:
  
  (5y – 3x2 + xy) – (3x2 – 5y – 2)
  
  = 5y – 3x2 + xy – 3x2 + 5y + 2
  
  = -3x2 – 3x2 + 5y + 5y + xy + 2
  
  = -6x2 + 10y + xy + 2
  
  Putting x = 2 and y = -1, we get
  
  -6(2)2 + 10(-1) + (2)(-1) + 2
  
  = -6 × 4 – 10 – 2 + 2
  
  = -24 – 10 – 2 + 2
  
  = -34
  Question 13.
  
  Simplify the following expressions and then find the numerical values for x = -2.
  
  (i) 3(2x – 4) + x2 + 5
  
  (ii) -2(-3x + 5) – 2(x + 4)
  
  Solution:
  
  (i) 3(2x – 4) + x2 + 5
  
  = 6x – 12 + x2 + 5
  
  = x2 + 6x – 7
  
  Putting x = -2, we get
  
  = (-2)2 + 6(-2) – 7
  
  = 4 – 12 – 7
  
  = 4 – 19
  
  = -15
  
  (ii) -2(-3x + 5) – 2(x + 4)
  
  = 6x – 10 – 2x – 8
  
  = 6x – 2x – 10 – 8
  
  = 4x – 18
  
  Putting x = -2, we get
  
  = 4(-2) – 18
  
  = -8 – 18
  
  = -26
  Question 14.
  
  Find the value of t if the value of 3x2 + 5x – 2t equals to 8, when x = -1.
  
  Solution:
  
  3x2 + 5x – 2t = 8 at x = -1
  
  ⇒ 3(-1)2 + 5(-1) – 2t = 8
  
  ⇒ 3(1) – 5 – 2t = 8
  
  ⇒ 3 – 5 – 2t = 8
  
  ⇒ -2 – 2t = 8
  
  ⇒ 2t = 8 + 2
  
  ⇒ -2t = 10
  
  ⇒ t = -5
  
  Hence, the required value of t = -5.
   Question 15.   
   Subtract the sum of -3x3y2 + 2x2y3 and -3x2y3 – 5y4 from x4 + x3y2 + x2y3 + y4.   
   Solution:   
   Sum of the given terms:   
   

   
   Required expression 
   Question 16.   
   What should be subtracted from 2x3 – 3x2y + 2xy2 + 3y2 to get x3 – 2x2y + 3xy2 + 4y2? [NCERT Exemplar]   
   Solution:   
   We have   
   

   
   Required expression 
  Question 17.
  
  To what expression must 99x3 – 33x2 – 13x – 41 be added to make the sum zero? [NCERT Exemplar]
  
  Solution:
  
  Given expression:
  
  99x3 – 33x2 – 13x – 41
  
  Negative of the above expression is
  
  -99x3 + 33x2 + 13x + 41
  
  (99x3 – 33x2 – 13x – 41) + (-99x3 + 33x2 + 13x + 41)
  
  = 99x3 – 33x2 – 13x – 41 – 99x3 + 33x2 + 13x + 41
  
  = 0
  
  Hence, the required expression is -99x3 + 33x2 + 13x + 41
Higher Order Thinking Skills (HOTS) Type
  Question 18.
  
  If P = 2x2 – 5x + 2, Q = 5x2 + 6x – 3 and R = 3x2 – x – 1. Find the value of 2P – Q + 3R.
  
  Solution:
  
  2P – Q + 3R = 2(2x2 – 5x + 2) – (5x2 + 6x – 3) + 3(3x2 – x – 1)
  
  = 4x2 – 10x + 4 – 5x2 – 6x + 3 + 9x2 – 3x – 3
  
  = 4x2 – 5x2 + 9x2 – 10x – 6x – 3x + 4 + 3 – 3
  
  = 8x2 – 19x + 4
  
  Required expression.
  Question 19.
  
  If A = -(2x + 3), B = -3(x – 2) and C = -2x + 7. Find the value of k if (A + B + C) = kx.
  
  Solution:
  
  A + B + C = -(2x + 13) – 3(x – 2) + (-2x + 7)
  
  = -2x – 13 – 3x + 6 – 2x + 7
  
  = -2x – 3x – 2x – 13 + 6 + 7
  
  = -7x
  
  Since A + B + C = kx
  
  -7x = kx
  
  Thus, k = -7
  Question 20.
  
  Find the perimeter of the given figure ABCDEF.
  
   
  
  Solution:
  
  Required perimeter of the figure
  
  ABCDEF = AB + BC + CD + DE + EF + FA
  
  = (3x – 2y) + (x + 2y) + (x + 2y) + (3x – 2y) + (x + 2y) + (x + 2y)
  
  = 2(3x – 2y) + 4(x + 2y)
  
  = 6x – 4y + 4x + 8y
  
  = 6x + 4x-4y + 8y
  
  = 10x + 4y
  
  Required expression.
  Question 21.
  
  Rohan’s mother gave him ₹ 3xy2 and his father gave him ₹ 5(xy2 + 2). Out of this total money he spent ₹ (10 – 3xy2) on his birthday party. How much money is left with him? [NCERT Exemplar]
  
  Solution:
  
  Money give by Rohan’s mother = ₹ 3xy2
  
  Money given by his father = ₹ 5(xy2 + 2)
  
  Total money given to him = ₹ 3xy2 + ₹ 5 (xy2 + 2)
  
  = ₹ [3xy2 + 5(xy2 + 2)]
  
  = ₹ (3xy2 + 5xy2 + 10)
  
  = ₹ (8xy2 + 10).
  
  Money spent by him = ₹ (10 – 3xy)2
  
  Money left with him = ₹ (8xy2 + 10) – ₹ (10 – 3xy2)
  
  = ₹ (8xy2 + 10 – 10 + 3x2y)
  
  = ₹ (11xy2)
  
  Hence, the required money = ₹ 11xy2