Chapter 13 Exponents and Powers Exercise 13.1
   
  Question 1.   
   Find the value of   
   (i) 26   
   (ii) 93   
   (iii) 112   
   (iv) 54   
   Solution:   
   (i) 26 = 2 × 2 × 2 × 2 × 2 × 2 = 64   
   (ii) 93 = 9 × 9 × 9 = 729   
   (iii) 112 = 11 × 11 = 121   
   (iv) 54 = 5 × 5 × 5 × 5 = 625 
  Question 2.
  
  Exress the following in exponential form:
  
  (i) 6 × 6 × 6 × 6
  
  (ii) t × t
  
  (iii) b × b × b × b
  
  (iv) 5 × 5 × 7 × 7 × 7
  
  (v) 2 × 2 × a × a
  
  (vi) a × a × a × c × c × c× c × d
  
  Solution:
  
  (i) 6 × 6 × 6 × 6 = 63
  
  (ii) t × t = t2
  
  (iii) b × b × b × b = b4
  
  (iv) 5 × 5× 7 × 7 × 7 = 52 × 73 = 52 · 73
  
  (v) 2 × 2 × a × a = 22 × a2 = 22 · a2
  
  (vi) a × a ×a × c × c × c × c × d = a3 × c4 × d = a3 · c4 · d
   Question 3.   
   Express each of the following numbers using exponential notation:   
   (i) 512   
   (ii) 343   
   (iii) 729   
   (iv) 3125   
   Solution:   
   

   
    
 
  Question 4.
  
  Identify the greater number, wherever possible, in each of the following?
  
  (i) 43 or 34
  
  (ii) 53 or 35
  
  (iii) 28 or 82
  
  (iv) 1002 or 2100
  
  (v) 210 or 102
  
  Solution:
  
  (i) 43 or 34
  
  43 = 4 × 4 × 4 = 64,
  
  34 = 3 × 3 × 3 × 3 = 81
  
  Since 81 > 64
  
  ∴ 34 is greater than 43.
  (ii) 53 or 35
  
  53 = 5 × 5 × 5 = 125
  
  35 = 3 × 3 × 3 × 3 × 3 = 243
  
  Since 243 > 125
  
  ∴ 35 is greater than 53.
  (iii) 28 or 82
  
  28 =2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 256
  
  82 = 8 × 8 = 64
  
  Since 256 > 64
  
  ∴ 28 is greater than 28.
  (iv) 1002 or 2100
  
  1002 = 100 × 100 = 10000
  
  2100 = 2 × 2 × 2 × … 100 times
  
  Here 2 × 2 × 2 ×2 × 2 × 2 × 2 ×2 × 2 × 2 × 2 × 2 × 2 × 2 = 214 = 16384
  
  Since 16384 > 10,000
  
  ∴ 2100 is greater than 1002.
  (v) 210 or 102
  
  210 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 1024
  
  102 = 10 × 10 = 100
  
  Since 1024 > 100
  
  ∴ 210 is greater than 102.
   Question 5.   
   Express each of the following as the product of powers of their prime   
   (i) 648   
   (ii) 405   
   (iii) 540   
   (iv) 3600   
   Solution:   
    
   
   


  Question 6.
  
  Simplify:
  
  (i) 2 × 103
  
  (ii) 72 × 22
  
  (iii) 23 × 5
  
  (iv) 3 × 44
  
  (v) 0 × 102
  
  (vi) 52 × 33
  
  (vii) 24 × 32
  
  (viii) 32 × 104
  
  Solution:
  
  (i) 2 × 103 = 2 × 10 × 10 × 10 = = 2000
  
  (ii) 72 × 22 = = 7 × 7 × 2 × 2 = 196
  
  (iii) 23 × 5 = 2 × 2 × 2 × 5 = 40
  
  (iv) 3 × 44 = 3 × 4 × 4 × 4 × 4 = 768
  
  (v) 0 × 102 = 0 × 10 × 10 = = 0
  
  (vi) 52 × 33 = 5 × 5 × 3 × 3 × 3 = 675
  
  (vii) 24 × 32 = 2 × 2 × 2 × 2 × 3 × 3 = 144
  
  (viii) 32 × 104 = 3 × 3 × 10 × 10 × 10 × 10 = 90000
  Question 7.
  
  Simplify:
  
  (i) (-4)3
  
  (ii) (-3) × (-2)3
  
  (iii) (-3)2 × (-5)2
  
  (iv) (-2)3 × (-10)3
  
  Solution:
  
   
  Question 8.
  
  Compare the following:
  
  (i) 2.7 × 1012; 1.5 × 108
  
  (ii) 4 × 1014; 3 × 1014
  
  Solution:
  
  (i) 2.7 × 1012; 1.5 × 108
  
  Here, 1012 > 108
  
  ∴ 2.7 × 1012> 1.5 × 108
  
  (ii) 4 × 1014; 3 × 1017
  
  Here, 1017 > 1014
  
  ∴ 4 × 1014 < 3 × 1017



