Chapter 13 Exponents and Powers Exercise 13.2
   
   Question 1.   
   Using laws of exponents, simplify and write the answer in exponential form:   
   

        
 
  Question 2.
  
  Simplify and express each of the following in exponential form:
  
   
  
  Solution:
  
   
  
   
  
   
  Question 3.
  
  Say true or false and justify your answer:
  
  (i) 10 × 1011 = 10011
  
  (ii) 23 > 52
  
  (iii) 23 × 32 = 65
  
  (iv) 320 = (1000)0
  
  Solution:
  
  (i) 10 × 1011 = 101+11 = 1012
  
  RHS = 10011 = (102)11 = 1022
  
  1012 ≠ 1022
  
  ∴ Statement is false.
  (ii) 23 > 52
  
  LHS = 23 = 8
  
  RHS = 522 = 25
  
  8 < 25
  
  ∴ 23 < 52
  
  Thus, the statement is false.
  (iii) 23 × 32 = 65
  
  LHS = 233 × 32 = 8 × 9 = 72
  
  RHS = 65 = 6 × 6 × 6 × 6 × 6 = 7776
  
  ∴ 72 ≠ 7776
  
  ∴ The statement is false.
  (iv) 30 = (1000)0
  
  ⇒ 1 = 1 True [∵ a0 = 1]
  Question 4.
  
  Express each of the following as a product of prime factors only in exponential form:
  
  (i) 108 × 192
  
  (ii) 270
  
  (iii) 729 × 64
  
  (iv) 768
  
  Solution:
  
  (i) 108 × 192 = 2 × 2 × 3 × 3 × 3 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3
  
  =28 × 34
  
   
  (iii) 729 × 64 = 3 × 3 × 3 × 3 × 3 × 3 × 2 × 2 × 2 × 2 × 2 × 2
  
  =36 × 26
  
   
   Question 5.   
   Simplify:   
   

   
   Solution:   
    
   
    
 





