Chapter 16 प्रायिकता Ex 16.3

प्रश्न 1.
प्रतिदर्श समष्टि S = {ω1, ω2, ω3, ω4, ω5, ω6} के परिणामों के लिए निम्नलिखित में से कौन से प्रायिकता निर्धारण वैध नहीं हैं :

MP Board Class 11th Maths Solutions Chapter 16 प्रायिकता Ex 16.3 img-1
हल:
(a) 0.1 + 0.01 + 0.05 + 0.03 + 0.01 + 0.2 + 0.6 = 1.00
घटनाओं की दी गयी प्रायिकता का योगफल 1 है।
अतः निर्धारित प्रायिकता वैध है।
(b) दी गयी प्रायिकताओं का योगफल

∴ दी गयी प्रायिकता वैध है।
(c) दी हुई प्रायिकताओं का योग
= 0.1 + 0.1 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7
= 2.7
यह एक से अधिक है
अतः दी गयी प्रायिकता वैध नहीं है।
(d) किसी भी घटना की प्रायिकता ऋणात्मक नहीं हो सकती।
यहाँ पर दो प्रायिकताएँ – 0.1 और – 0.2 ऋणात्मक हैं।
अतः दी गयी प्रायिकता वैध नहीं है।
(e) दी गयी प्रायिकताओं का योगफल

जो कि एक से अधिक है
अतः दी गयी प्रायिकता वैध नहीं है।

प्रश्न 2.
एक सिक्का दो बार उछाला जाता है। कम से कम एक पट प्राप्त होने की क्या प्रायिकता है ?
हल:
दिए हुए परीक्षण का प्रतिदर्श समष्टि
S = {HH, HT, TH, TT}
∴ कुल सम्भावित परिणामों की संख्या = 4 कम से कम एक पट प्राप्त करने के तरीके TH, HT, TT = 3
एक सिक्के को दो बार उछालने से कम से कम 1 पट प्राप्त करने की प्रायिकता = 3/4.

प्रश्न 3.
एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए :
(i) एक अभाज्य संख्या प्रकट होना।
(ii) 3 या 3 से बड़ी संख्या प्रकट होना।
(iii) 1 या 1 से छोटी संख्या प्रकट होना।
(iv) छः से बड़ी संख्या प्रकट होना।
(v) छः से छोटी संख्या प्रकट होना।
हल:
एक पासे को फेंकने में परीक्षण का प्रतिदर्श समष्टि
S = {1, 2, 3, 4, 5, 6}
अर्थात् कुल सम्भावित परिणाम n (S) = 6
(i) अभाज्य संख्याएँ 2, 3, 5 हैं।
n (A)= 3
अतः एक अभाज्य संख्या प्रकट होने की प्रायिकता

(ii) माना घटना 3 या 3 से बड़ी संख्या को B से दर्शाया गया है, 3 या 3 से बड़ी संख्याएँ 3, 4, 5, 6 हैं।
n (B) = 4

(iii) माना घटना 1 या 1 से छोटी संख्या को C से दर्शाया गया है।
1 या 1 से छोटी संख्याएँ = 1
∴ n(C) = 1
अतः प्रायिकता, P(C) = 1/6.

(iv) एक पासे पर 6 से बड़ी कोई संख्या नहीं होती है, अर्थात् इसकी प्रायिकता
= 0/6 = 0

(v) 6 से छोटी संख्याएँ : 1, 2, 3, 4, 5 हैं। यदि इसे E से दर्शाया गया हो, तब
n(E) = 5
अतः प्रायिकता, P(E) = 5/6.

प्रश्न 4.
ताश की एक गड्डी के 52 पत्तों में से एक पत्ता यादृच्छया निकाला गया है।
(a) प्रतिदर्श समष्टि में कितने बिन्दु हैं ?
(b) पत्ते का हुकुम का इक्का होने की प्रायिकता क्या है ?
(c) प्रायिकता ज्ञात कीजिए कि पत्ता
(i) इक्का है
(ii) काले रंग का है।
हल:
(a) ताश की गड्डी में कुल 52 पत्ते होते हैं। जब एक पत्ता निकाला जाता है तो इसके प्रतिदर्श समष्टि में 52 बिन्दु होते हैं।
(b) ताश को गड्डी में हुकुम का एक इक्का होता है। यदि एक पत्ता निकालने की घटना को A से दर्शाया जाए तो
n(A) = 1, n(S) = 52
P(A) = P(हुकुम का इक्का) = 1/52.
(c) (i) यदि B इक्का निकालने को दर्शाता हो तो
n(B) = 4 [∵ ताश की गड्डी में 4 इक्के होते हैं।]
n(S) = 52
∴ P(B) = 1/13.

(ii) C काले रंग हुकुम की पत्ते आने की घटना को दर्शाता है .
n(C) = 26 [∵ ताश की गड्डी में 26 काले पत्ते होते हैं।]
n(s) = 52
∴ P(C) = 26/52=1/2

प्रश्न 5.
एक अनभिनत (unbiased) सिक्का जिसके एक तल पर 1 और दूसरे तल पर 6 अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग (i) 3 है (ii) 12 है।
हल:
एक पासे पर 1 व 6 अंकित है और दूसरे पर 1, 2, 3, 4, 5, 6.
∴ प्रतिदर्श समष्टि = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
(i) दी गयी संख्याओं का योग 3 घटना (1, 2) से प्राप्त होता है।
अनुकूल परिणामों की संख्या = 1
∴ प्रायिकता जब प्राप्त संख्याओं का योग 3 है = 1/12

(ii) दी गयी संख्याओं का योग घटना (6, 6) से प्राप्त होता है। यहाँ अनुकूल परिणामों की संख्या = 1
∴ प्रायिकता जब प्राप्त संख्याओं का योग 12 है = 1/12

प्रश्न 6.
नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं। यदि एक समिति के लिए यादृच्छया एक परिषद् सदस्य चुना गया है तो एक स्त्री के चुने जाने की कितनी सम्भावना है ?
हल:
नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं।

∴ कुल सम्भावित परिणामों की संख्या = 10
कुल 6 स्त्रियाँ हैं। उनमें से एक स्त्री को चुनने के तरीके = 6
अनुकूल परिणामों की संख्या = 6
एक स्त्री को चुने जाने की प्रायिकता = 6/10=3/5.

प्रश्न 7.
एक अनभिनत सिक्के को चार बार उछाला जाता है और एक व्यक्ति प्रत्येक चित्त पर एक रूपया जीतता है और प्रत्येक पट पर 1.50 रू हारता है। इस परीक्षण के प्रतिदर्श समष्टि से ज्ञात कीजिए कि आप चार उछालों में कितनी विभिन्न राशियाँ प्राप्त कर सकते हैं। साथ ही इन राशियों से प्रत्येक की प्रायिकता भी ज्ञात कीजिए।
हल:
सिक्के की उछाल में पाँच तरीकों से चित्त प्राप्त कर सकते हैं। जो निम्न प्रकार हैं।
कुल संभावित परिणाम = {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}
(i) कोई भी चित्त प्राप्त नहीं होता या चारों पट प्राप्त होते हैं।
चारों पट् के आने पर हानि = 4 × 1.50 = 6 रू
चार पट प्राप्त करने के तरीके (TTTT) = 1
कुल सम्भावित परिणाम = 16
∴ चार पट प्राप्त करने की प्रायिकता = 1/16.

(ii) जब एक चित्त और 3 पट प्राप्त होते हैं।
हानि = 3 × 1.50 – 1 × 1
= 4.50 – 1.00 = 3.50 रू
एक चित्त और 3 पट इस प्रकार आ सकते हैं :
{TTTH, TTHT, THTT, HTTT}
∴ 4 तरीकों से एक चित्त और 3 पट प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
एक चित्त प्राप्त करने की प्रायिकता = 6/16=1/4.

(iii) जब 2 चित्त और 2 पट् प्रकट होते हैं
हानि = 2 × 1.5 – 1 × 2 .
= 3 – 2 = 1 रू
2 चित्त और 2 पट् इस प्रकार प्राप्त हो सकते हैं।
{HHTT, HTHT, HTTH, THHT, THTH, TTHH}
छः तरीकों से 2 चित्त और 2 पट प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
2 चित्त प्राप्त करने की प्रायिकता = 2.

(iv) जब 3 चित्त और 1 पट् प्रकट होता है, तब
लाभ = 3 × 1 – 1 × 1.5
= 3 – 1.50 = 1.50 रू
3 चित्त प्राप्त करने के तरीके = {HHHT, HHHH, HTHH, THHH}
चार तरीकों से 3 चित्त और 1 पट प्राप्त होता है।
कुल सम्भावित परिणाम = 16
3 चित्त प्राप्त करने की प्रायिकता = 4/16=1/4.

(v) चारों चित्त एक तरीके से प्राप्त कर सकते हैं, तब
लाभ = 4 × 1 = 4 रू
कुल सम्भावित परिणाम = 16.
चार चित्त प्राप्त करने की प्रायिकता = 4/16=1/4.

प्रश्न 8.
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए :
(i) तीन चित्त प्रकट होना
(ii) 2 चित्त प्रकट होना
(iii) न्यूनतम 2 चित्त प्रकट होना
(iv) अधिकतम 2 चित्त प्रकट होना
(v) एक भी चित्त प्रकट न होना
(vi) 3 पट प्रकट होना
(vii) तथ्यतः 2 पट् प्रकट होना
(viii) कोई भी पट प्रकट न होना
(ix) अधिकतम 2 पट् प्रकट होना
हल:
यदि 3 सिक्के उछाले जाते हैं तो परीक्षण का प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
कुल सम्भावित परिणाम = 8
(i) तीन चित्त {HHH} एक तरीके से प्रकट होता है।
अतः 3 चित्त प्राप्त करने की प्रायिकता = 1/8.

(ii) 2 चित्त या 2 चित्त 1 पट प्राप्त करने के HHT, HTH, THH तीन तरीके हैं।
कुल सम्भावित परिणाम = 8
2 चित्त प्रकट होने की प्रायिकता = 3/8

(iii) न्यूनतम 2 चित्त प्राप्त करने के लिए 2 चित्त 1 पट् या 3 चित्त आएंगे
∴ न्यूनतम 2 चित्त HHT, HTH, THH, HHH, चार तरीकों से प्रकट हो सकते हैं।
अतः न्यूनतम 2 चित्त प्रकट होने की प्रायिकता = 4/3=1/2.

(iv) अधिकतम 2 चित्त, इस प्रकार प्रकट होंगे।
(a) कोई चित्त नहीं या तीन पट्
(b) एक चित्त 2 पट्
(c) 2 चित्त 1 पट्
यह {TIT, HTT, THT, TTH, HHT, HTH, THH} सात तरीकों से प्रकट हो सकते हैं।
कुल संभावित परिणाम = 8
∴ अधिकतम 2 चित्त प्रकट होने की प्रायिकता = 7/8

(v) एक भी चित्त न आने का अर्थ है तीन पट प्रकट होना जो (TTT) एक तरीके से हो सकता है।
कुल संभावित परिणाम = 8
अतः एक भी चित्त न आने की प्रायिकता = 1/8

(vi) तीन पट (TIT) एक तरीके से प्रकट हो सकते हैं।
तीन पट् प्रकट होने की प्रायिकता = 1/8

(vii) तथ्यतः 2 पट् (TTH, THT, HTT) तीन तरीकों से प्राप्त हो सकते हैं।
कुल संभावित परिणाम = 8
∴ दो पट् प्रकट होने की प्रायिकता = 3/8

(viii) कोई पट् नहीं का अर्थ है तीनों चित्त प्रकट होते हैं तो (HHH) 1 तरीके से ही हो सकता है।
कुल संभावित परिणाम = 8
कोई पट् प्रकट न होने की प्रायिकता = 1/8

(ix) अधिकतम दो पट् प्रकट होना
⇒ तीनों पट् प्रकट नहीं होते।
तीनों पट् प्रकट होने की प्रायिकता = 1/8
∴ अधिकतम दो पट् प्रकट होने की प्रायिकता = 1 – (तीनों पट् प्रकट होने की प्रायिकता)
= 1 – 1/8=7/8.

प्रश्न 9.
यदि किसी घटना A की प्रायिकता 2/11 है तो घटना ‘A – नहीं’ की प्रायिकता ज्ञात कीजिए।
हल:
P(A) = 2/11
P(A – नहीं) = P (A’) = 1 – P(A)
= 1 – 2/11=9/11.

प्रश्न 10.
शब्द ‘ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर
(i) एक स्वर (vowel) है
(ii) एक व्यंजन (consonant) है।
हल:
शब्द ASSASSINATION में कुल 13 अक्षर हैं जिसमें (AAAIIO) 6 स्वर और (SSSSNNT) 7 व्यंजन है।
(i) n(S) = 13
स्वरों की संख्या = 6
एक स्वर चुनने की प्रायिकता = 6/13.
(ii) व्यंजनों की संख्या = 7
n(S) = 13
एक व्यंजन चुनने की प्रायिकता = 7/13

प्रश्न 11.
एक लाटरी में एक व्यक्ति 1 से 20 तक की संख्याओं में से छः भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गई छः संख्याएँ उन छः संख्याओं से मेल खाती हैं जिन्हें लाटरी समिति ने पूर्व निर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है ?
हल:

प्रश्न 12.
जाँच कीजिए कि निम्न प्रायिकताएँ P(A) और P(B) युक्ति संगत (consistently) परिभाषित की गई हैं:
(i) P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
(ii) P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
हल:
(i) दिया है : P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
∴ यहाँ P(A ∩ B) = 0.6 > P(A)
अत: P(A) और (B) युक्ति संगत नहीं है।
(ii) यहाँ पर P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
अब
P(A ∩ B) = P(A) + P(B) – P(A ∪ B)
= 0.5 + 0.4 – 0.8
∴ P(A ∩ B) = 0.1
अतः P(A) और P(B) युक्ति संगत है।

प्रश्न 13.
निम्नलिखित सारणी में खाली स्थान भरिए :
MP Board Class 11th Maths Solutions Chapter 16 प्रायिकता Ex 16.3 img-3
हल:

(ii) P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.6 = 0.35 + P(B) – 0.25
या P(B) = 0.6 – 0.35 + 0.25 = 0.5.
(iii) P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.7 = 0.5 + 0.35 – P(A ∩ B)
∴ P(A ∪ B) = 0.5 + 0.35 – 0.7 = 0.15.

प्रश्न 14.

प्रश्न 15.

प्रश्न 16.
घटनाएँ E और F इस प्रकार हैं कि P(E – नहीं और F – नहीं) = 0.25, बताइए कि E और F परस्पर अपवर्जी हैं या नहीं।
हल:
P(E – नहीं और F – नहीं) = P(E ∩ F)
= P[(E ∪ F)’]
अर्थात् = 1 – P(E ∪ F) = 0.25
या P(E ∪ F) = 1 – 0.25
= 0.75.
∴ P(E) ∪ F) ≠ 0 इसलिए E और F परस्पर अपवर्जी नहीं है।

प्रश्न 17.
घटनाएँ A और B इस प्रकार हैं कि P(A) = 0.42, P(B) = 0.48 और P(A और B) = 0.16, ज्ञात कीजिए: .
(i) P(A – नहीं)
(ii) P (B – नहीं)
(iii) P(A या B)
हल:
P(A) = 0.42, P(B) = 0.48
P(A और B) = P(A ∩ B) = 0.16
(i) P(A – नहीं) = P(A’) = 1 – P(A) = 1 – 0.42 = 0.58.
(ii) P(B – नहीं) = P(B’) = 1 – P(B) = 1 – 0.48 = 0.52.
(iii) P(A या B) = P (A ∪ B) = P(A) + P(B) – P(A ∩ B)
= 0.42 + 0.48 – 0.16
= 0.90 – 0.16 = 0.74.

प्रश्न 18.
एक पाठशाला की कक्षा XI के 40% विद्यार्थी गणित पढ़ते हैं और 30% जीव विज्ञान पढ़ते हैं। कक्षा के 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं । यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है, तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
हल:
एक पाठशाला के 40% विद्यार्थी गणित पढ़ते हैं।
∴ गणित पढ़ने वाले विद्यार्थी की प्रायिकता P(M) = 40/100 = 0.4
30% विद्यार्थी जीव विज्ञान पढ़ते हैं।
∴ जीव विज्ञान पढ़ने वाले विद्यार्थी की प्रायिकता P(B) = 30/100 = 0.3
∴ 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं।
∴ गणित और जीव विज्ञान वाले विद्यार्थियों की प्रायिकता, P(M ∩ B)
= 10/100
= 0.1
अब एक विद्यार्थी यादृच्छया चुना गया हो, तब उस विद्यार्थी द्वारा गणित या जीव विज्ञान लिए गए विषय की प्रायिकता
P(M ∪ B) = P(M) + P(B) – P(M ∩ B)
= 0.4 + 0.3 – 0.1
= 0.6

प्रश्न 19.
एक प्रवेश परीक्षा की दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायिकता 0.8 है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता 0.7 है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता 0.95 है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना A और B क्रमशः पहले और दूसरे परीक्षण में उत्तीर्ण होने को दर्शाते हैं।
P(A) = 0.8, P(B) = 0.7
कम से कम एक परीक्षण में उत्तीर्ण होने की प्रायिकता
= 1 – P(A’ ∩ B’) = 0.95
⇒ P(A’ ∩ B’) = 1 – 0.95 = 0.05
परन्तु A’ ∩ B’ = (A ∪ B)’ (डी-मोर्गन नियम से)
∴ P(A’ ∩ B’) = P(A ∪ B)’ = 1 – P(A ∪ B) = 0.05
∴ P(A ∪ B) = 1 – 0.05 = 0.95
अब P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.95 = 0.8 + 0.7 – P(A ∩ B)
P(A ∩ B) = 1.5 – 0.95 = 0.55
इस प्रकार दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता = 0.55.

प्रश्न 20.
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिन्दी दोनों विषयों को उत्तीर्ण करने की प्रायिकता 0.5 है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता 0.1 है। यदि अंग्रेजी की परीक्षा उत्तीर्ण करने की प्रायिकता 0.75 हो तो हिन्दी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना E और H क्रमशः अंग्रेजी और हिन्दी में पास करने को दर्शाते हैं।
तब अंग्रेजी और हिन्दी दोनों परीक्षा में उत्तीर्ण होने की प्रायिकता
P(E ∩ H) = 0.5
दोनों में से कोई परीक्षा उत्तीर्ण न करने की प्रायिकता
= P(E’ ∩ H’) = 0.1
या P[(E ∪ H)’] = 1 – P(E ∪ H) = 0.1
⇒ P(E ∪ H) = 1 – 0.1 = 0.9
अंग्रेजी परीक्षा में उत्तीर्ण होने की प्रायिकता = P(E) = 0.75
अतः
P(E ∪ H) = 0.9, P(E) = 0.75, P(E ∩ H) = 0.5
P(E ∪ H) = P(E) + P(H) – P(E ∩ H)
0.9 = 0.75 + P(H) – 0.5
P(H) = 0.9 + 0.5 – 0.75
= 1.4 – 0.75 = 0.65
अतः हिन्दी परीक्षा में उत्तीर्ण होने की प्रायिकता = 0.65.

प्रश्न 21.
एक कक्षा के 60 विद्यार्थियों में से 30 ने एन.सी.सी. (NCC), 32 ने एन.एस.एस. (NSS) और 24 ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
(i) विद्यार्थी ने एन.सी.सी. या एन.एस.एस. को चुना है।
(ii) विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।
(iii) विद्यार्थी ने एन.एस.एस. को चुना है किन्तु एन.सी.सी को नहीं चुना है।
हल:

Leave a Reply

Your email address will not be published. Required fields are marked *

0:00
0:00

slot siteleri-sahabet-matadorbet-sweet bonanza-mariobet-deneme bonusu veren siteler 2026-radissonbet-kaçak iddaa-aviator-slot siteleri-trwin-deneme bonusu veren yeni siteler-superbahis-matadorbet-sahabet-matadorbet-superbet-tipobet-sahabet-deneme bonusu veren yeni siteler-slotday-xslot-kralbet-sweet bonanza-bahibom-anadoluslot-slotday-casino siteleri-radissonbet-casibom-casinofast-cratosroyalbet-asyabahis-asyabahis-stake-betboo-betboo-youwin-youwin-superbahis-superbahis-oleybet-oleybet-1xbet-ngsbahis-betmatik-artemisbet-bets10-deneme bonusu veren siteler 2026-tarafbet-piabellacasino-baywin-superbahis-mersobahis-tipobet-slotella-yeni slot siteleri-ritzbet-slot siteleri-canlı bahis siteleri-hitbet-celtabet-pusulabet-betano-betano-betewin-pusulabet-madridbet-1xbet-mariobet-betmatik-betmatik-betenerji-misty-misty-güvenilir casino siteleri-misli-bahis siteleri-dedebet-bahsegel-bahsegel-meritking-meritking-holiganbet-holiganbet-bets10-ramadabet-bets10-casibom-casibom-ngsbahis-jojobet-marbahis-marbahis-asyabahis-asyabahis-tarafbet-stake-betboo-yeni slot siteleri-superbahis-superbahis-oleybet-oleybet-misli-misli-1xbet-artemisbet-slot siteleri-limanbet-limanbet-piabellacasino-piabellacasino-baywin-baywin-mersobahis-mersobahis-almanbahis-almanbahis-pincocasino-pincocasino-savoycasino-hitbet-exonbet-anadoluslot-betano-betano-pusulabet-madridbet-mariobet-mariobet-goldenbahis-betmatik-betenerji-misty-misty-betmatik-mostbet-bettilt-bahsegel-maxwin-meritking-venombet-holiganbet-betturkey-güvenilir casino siteleri-bet365-matadorbet-goldenbahis-cratosroyalbet-grandpashabet-casibom-jojobet-jojobet-marsbahis-marsbahis-sweet bonanza-bahibom-aviator-venombet-mariobet-sahabet-aviator-aviator-aviator-bahis siteleri-superbet-grandpashabet-casino siteleri-betkom-palacebet-deneme bonusu-dedebet-deneme bonusu-spinco-deneme bonusu veren siteler-kaçak bahis-deneme bonusu veren siteler 2026-deneme bonusu veren siteler 2026-deneme bonusu veren siteler 2026-betkom-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-casinofast-tipobet-casibom-maxwin-deneme bonusu-güvenilir casino siteleri-spinco-betwild-güvenilir bahis siteleri-sweet bonanza-sweet bonanza-sweet bonanza-misli-betsin-yeni slot siteleri-stake-stake-sweet bonanza-asyabahis-ramadabet-betboo-xslot-superbahis-deneme bonusu veren siteler-oleybet-kaçak iddaa-misli-misli-deneme bonusu veren yeni siteler-damabet-pusulabet-artemisbet-limanbet-limanbet-piabellacasino-1xbet-betewin-betsin-canlı casino siteleri-almanbahis-betturkey-tokyobet-meritbet-pincocasino-pincocasino-gates of olympus-royalbet-celtabet-ritzbet-deneme bonusu-pusulabet-pusulabet-betenerji-betenerji-misty-misty-mostbet-mostbet-bettilt-bahsegel-nerobet-meritking-meritking-trwin-holiganbet-matadorbet-kaçak bahis-canlı bahis siteleri-casibom-betwild-jojobet-sahabet-aviator-marsbahis-casino siteleri-enbet-palacebet-savoycasino-enbet-enbet-mariobet-bet365-damabet-canlı casino siteleri-exonbet-deneme bonusu veren yeni siteler-gates of olympus-tokyobet-deneme bonusu veren siteler 2026-kaçak bahis-sweet bonanza-yeni slot siteleri-sweet bonanza-deneme bonusu veren siteler-slot siteleri-aviator-güvenilir casino siteleri-bahis siteleri-güvenilir bahis siteleri-casino siteleri-deneme bonusu veren yeni siteler-kralbet-güvenilir bahis siteleri-gates of olympus-deneme bonusu veren siteler-slotella-deneme bonusu-casino siteleri-casino siteleri-bahis siteleri-royalbet-aviator-nerobet-betturkey-yeni slot siteleri-canlı casino siteleri-sweet bonanza-slot siteleri-slot siteleri-kaçak iddaa-kaçak iddaa-kaçak bahis-kaçak bahis-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-gates of olympus-gates of olympus-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren siteler 2026-deneme bonusu veren siteler 2026-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu-deneme bonusu-casino siteleri-casino siteleri-canlı casino siteleri-canlı casino siteleri-canlı bahis siteleri-canlı bahis siteleri-bahis siteleri-bahis siteleri-aviator-aviator-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-matadorbet-