Chapter 16 Probability (प्रायिकता)

.प्रश्नावली 16.1

निम्नलिखित प्रश्नों 1 से 7 में निर्दिष्ट परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।

प्रश्न 1.
एक सिक्के को तीन बार उछाला गया है।
हल:
एक सिक्के को 3 बार उछालने से प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

प्रश्न 2.
एक पासा दो बार फेंका गया है।
हल:
एक पासे को दो बार फेंकने से जो घटनाएं घटी उनका प्रतिदर्श समष्टि :
S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4,1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5,4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

प्रश्न 3.
एक सिक्का चार बार उछाला गया है।
हल:
एक सिक्के को 4 बार उछालने से घटनाओं का प्रतिदर्श समष्टि इस प्रकार है।
S = {HHHH, HHHT, HHTH, HTHH, HTTH, HTHT, HHTT, HTTT, THHH, THHT, THTH, TTHH, TTTH, TTHT, THTT, TTTT}

प्रश्न 4.
एकं सिक्का उछाला गया है और एक पासा फेंका गया है।
हल:
एक सिक्का व एक पासा उछालने पर प्रतिदर्श समष्टि
s = {H1, H2, H3, H4, H2, H6, T1, T2, T3, T4, T5, T6}

प्रश्न 5.
एक सिक्का उछाला गया है और केवल उस दशा में, जब सिक्के पर चित्त प्रकट होता है एक पासा फेंका जाता है।
हल:
सिक्के पर चित्त आने से एक पासा फेंका जाता है अन्यथा नहीं की प्रतिदर्श समष्टि
s = {H1, H2, H3, H4, H2, H6, T}

प्रश्न 6.
X कमरे में 2 लड़के और 2 लड़कियाँ तथा Y कमरे में 1 लड़का और 3 लड़कियाँ हैं। उस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए जिसमें पहले एक कमरा चुना जाता है और फिर एक बच्चा चुना जाता है।
हल:
माना X कमरे के लड़के व लड़कियों को B1, B2, G1, G2 और Y कमरे के लड़के व लड़कियों को B3, G3, G4, G5 से दर्शाया गया है।
एक कमरे को चुनना और फिर एक बच्चे को चुने जाने की प्रतिदर्श समष्टि
S = {XB1, XB2, XG1, XG2, YB3, YG3, YG4, YG5}

प्रश्न 7.
एक पासा लाल रंग का, एक सफेद रंग का और एक अन्य पासा नीले रंग का एक थैले में रखे हैं। एक पासा यादृच्छया चुना गया और उसे फेंका गया है। पासे का रंग और इसके ऊपर के फलक पर प्राप्त संख्या को लिखा गया है। प्रतिदर्श समष्टि का वर्णन कीजिए।
हल:
माना लाल रंग को R से, सफेद रंग को W से तथा नीले रंग को B से दर्शाया गया हो तो पासे को चुन कर अंकों को प्राप्त करने की प्रतिदर्श समष्टि।
S = {R1, R2, R3, R4, R5, R6, W1, W2, W3, W4, W5, W6, B1, B2, B3, B4, B5, B6}

प्रश्न 8.
एक परीक्षण में 2 बच्चों वाले पैरिवारों में से प्रत्येक में लड़के-लड़कियों की संख्या को लिखा जाता
(i) यदि हमारी रूचि इस बात को जानने में है कि जन्म के क्रम में बच्चा लड़का है या लड़की है तो प्रतिदर्श समष्टि क्या होगी ?
(ii) यदि हमारी रूचि किसी परिवार में लड़कियों की संख्या जानने में है तो प्रतिदर्श समष्टि क्या होगी ?
हल:
(i) परिवार में दो बच्चे हैं वे लड़के, लड़की हो सकते हैं। इनकी प्रतिदर्श समष्टि = {BB, BG, GB, GG}
(ii) एक परिवार में कोई लड़की न हो या एक या दो लड़कियाँ होगी। अतः प्रतिदर्श समष्टि {0, 1, 2}

प्रश्न 9.
एक डिब्बे में 1 लाल और एक जैसी 3 सफेद गेंद रखी गई हैं। दो गेंद उत्तरोत्तर (in succession) बिना प्रतिस्थापित किए यादृच्छया निकाली जाती है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
डिब्बे में एक लाल व 3 सफेद गेंद हैं। यदि लाल को R से, सफेद को W से निरूपित किया जाए तो इस प्रशिक्षण का प्रतिदर्श समष्टि
S = {RW, WR, WW}.

प्रश्न 10.
एक परीक्षण में एक सिक्के को उछाला जाता है और यदि उस पर चित्त प्रकट होता है तो उसे पुनः उछाला जाता है। यदि पहली बार उछालने पर पट् प्राप्त होता है तो एक पासा फेंका जाता है। प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
यदि एक सिक्का उछाला जाता है और चित्त प्रकट होता है तो दुबारा उछालने पर चित्त या पट् आ सकता है। इस प्रकार घटना HH या HT होगी। पट् आने पर पासा फेंका जाता है। पासा फेंकने से संख्या 1, 2, 3, 4, 5, 6 आ सकती है।
प्रतिदर्श समष्टि = {HH, HT, T1,T2, T3, T4, T5, T6}.

प्रश्न 11.
मान लीजिए कि बल्बों के एक ढेर में से 3 बल्ब यादृच्छया निकाले जाते हैं। प्रत्येक बल्ब को जाँची जाता है और उसे खराब (D) या ठीक (N) में वर्गीकृत करते हैं। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
खराब के लिए D और ठीक बल्ब को N द्वारा निरूपित करते हैं। तीन बल्बों से बना प्रतिदर्श समष्टि इस प्रकार है।
{DDD, DDN, DND, NDD, NND, NDN, DNN, NNN}

प्रश्न 12.
एक सिक्का उछाला जाता है। यदि परिणाम चित्त हो तो एक पासा फेंका जाता है। यदि पासे पर एक सम संख्या प्रकट होती है, तो पासे को पुनः फेंका जाता है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
एक सिक्का उछालने पर यदि चित्त को H से और पट् को T से दर्शाया जाए और चित्त आने पर पासा फेंका जाता है H1, H2, H3, H4, H5, H6 की घटनाएँ हो सकती हैं। H2, H4, H6 आने की अवस्था में पासा दुबारा फेंका जाता है जिससे प्रत्येक की 1, 2, 3, 4, 5, 6 की छः घटनाएं हो सकती हैं।
इस प्रकार प्रतिदर्श समष्टि है : {T1, H1, H3, H5, H21, H22, H23, H24, H25, H26, H41, H42,H43, H44, H45, H46, H61, H62, H63, H64, H65, H66}

प्रश्न 13.
कागज की चार पर्चियों पर संख्याएँ 1, 2, 3, 4 अलग-अलग लिखी गई हैं। इन पर्चियों को एक डिब्बे में रख कर भली-भाँति मिलाया गया है। एक व्यक्ति डिब्बे में से दो पर्चियाँ एक के बाद दूसरी बिना प्रतिस्थापित किए निकालता है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
एक डिब्बे में चार पर्चियाँ हैं। जिन पर 1, 2, 3, 4 लिखा है। यदि पर्ची सं. 1 पहली पर्ची हो दूसरी पर्ची पर सं. 2, 3, 4 लिखा होगा। इसी प्रकार पहली पर्ची पर 2 लिखा हो तो शेष पर्ची पर 1, 3, 4 लिखा होगा। इस प्रकार प्रतिदर्श समष्टि है :
{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}

प्रश्न 14.
एक परीक्षण में एक पासा फेंका जाता है और यदि पासे पर प्राप्त संख्या सम है तो एक सिक्का एक बार उछाला जाता है। यदि पासे पर प्राप्त संख्या विषम है तो सिक्के को दो बार उछालते हैं। प्रतिदर्श समष्टि लिखिए।
हल:
पासा फेंकने से यदि सम संख्या प्राप्त होती है तो सिक्का उछालने पर H या T की घटना होगी। यदि पासे पर विषम संख्या आती है तो सिक्का दो बार उछाला जाता है जिससे HH, HT, TH, TT घटनाएँ हो सकती हैं। इस प्रकार प्रतिदर्श समष्टि इस प्रकार है-
{2H, 2T, 4H, 4T, 6H, 6T, 1HH, 1HT, 1TH, 1TT, 3HH, 3HT, 3TH, 3TT, 5HH, 5HT, 5TH, 5TT}.

प्रश्न 15.
एक सिक्का उछाला गया यदि उस पर पट् प्रकट होता है तो एक डिब्बे में से जिसमें 2 लाल और 3 काली गेंदे रखी हैं, एक गेंद निकालते हैं। यदि सिक्के पर चित्त प्रकट होता है तो एक पासा फेंका जाता है। इस परीक्षण का प्रतिदर्श समष्टि लिखिए।
हल:
यदि लाल रंग की गेंद को R1, R2 से तथा काले रंग की गेंद को B1, B2, B3 से दर्शाया जाए तो सिक्का उछालने पर यदि पट् आतो है तो R1, R2, B1, B2, B3 में से एक घटना होगी। यदि सिक्के पर चित्त आता है तो पासा फेंकने से 1, 2, 3, 4, 5, 6 आते हैं। तो प्रतिदर्श समष्टि इस प्रकार है :
{TR1, TR2, TB1, TB2, TB3, H1, H2, H3, H4, H2, H6}.

प्रश्न 16.
एक पासे को बार-बार तब तक फेंका जाता है जब तक उस पर 6 प्रकट न हो जाए। इस परीक्षण का प्रतिदर्श समष्टि क्या है ?
हल:
6 आने पर पासा दुबारा नहीं फेंका जाएगा। यदि 1, 2, 3, 4, 5 में से कोई संख्या प्रकट होती है तो पासा दुबारा नहीं फेंका जाती। इस परीक्षण का प्रतिदर्श समष्टि है:
{6, (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (1, 1, 6), (1, 2, 6),… (1, 5, 6), (2, 1, 6), (2, 2, 6), …, (2, 5, 6),… (3, 1, 6), (3, 2, 6), …, (3, 5, 6), (4, 1, 6), (4, 2, 6), … (4, 5, 6), (5, 1, 6), (5, 2, 6),…, (5, 5, 6)….}.

प्रश्नावली 16.2

प्रश्न 1.
एक पासा फेंका जाता है। मान लीजिए घटना E ‘पासे पर संख्या 4′ दर्शाता है और घटना F ‘पासे पर सम संख्या’ दर्शाता है। क्या E और F परस्पर अपवर्जी हैं?
हल:
पासा फेंकने पर प्रतिदर्श समष्टि = {1, 2, 3, 4, 5, 6}
E (संख्या 4 दर्शाता है) = {4}
F (सम संख्या) = {2, 4, 6}
E ∩ F = {4} ∩ {2, 4, 6} = {4} ≠ φ
अतः E और F परस्पर अपवर्जी नहीं हैं।

प्रश्न 2.
एक पासा फेंका जाता है। निम्नलिखित घटनाओं का वर्णन कीजिए:
(i) A : संख्या 7 से कम है।
(ii) B : संख्या 7 से बड़ी है।
(iii) C : संख्या 3 का गुणज है।
(iv) D : संख्या 4 से कम है।
(v) E : 4 से बड़ी सम संख्या है।
(vi) F : संख्या 3 से कम नहीं है।
A ∪ B, A ∩ B, B ∪ C, E ∪ F, D ∩ E, A – C, D – E, F’, E ∩ F’ भी ज्ञात कीजिए।
हल:
S = {1, 2, 3, 4, 5, 6}
(i) A : संख्या 7 से कम है = {1, 2, 3, 4, 5, 6}
(ii) B : संख्या 7 से बड़ी है = पासे में कोई संख्या 7 से बड़ी नहीं है।
(iii) C : संख्या 3 का गुणज है = {3, 6}
(iv) D : संख्या 4 से कम है = {1, 2, 3}
(v) E : 4 से बड़ी सम संख्या है = {6}
(vi) F = संख्या 3 से कम नहीं है। = {3, 4, 5, 6}
A ∪ B = {1, 2, 3, 4, 5, 6} ∪ φ = {1, 2, 3, 4, 5, 6}
A ∩ B = {1, 2, 3, 4, 5, 6} ∩ φ = φ
B ∪ C = φ ∪ {3, 6} = {3, 6}.
E ∪ F = {6} ∪ {3, 4, 5, 6} = {3, 4, 5, 6}.
D ∩ E = {1, 2, 3} ∩ {6} = φ.
A – C = {1, 2, 3, 4, 5, 6} – {3, 6} = {1, 2, 4, 5}.
F’ = {3, 4, 5, 6}’ = S – {3, 4, 5, 6} = {1, 2, 3, 4, 5, 6} – {3, 4, 5, 6} = {1, 2}.
E ∩ F’ = {6} ∩ {3, 4, 5, 6}’ = {6} ∩ {1, 2} = φ.

प्रश्न 3.
एक परीक्षण में पासे के एक जोड़े को फेंकते हैं और उन पर प्रकट संख्याओं को लिखते हैं। निम्नलिखित संख्याओं का वर्णन कीजिए।
A : प्राप्त संख्याओं का योग 8 से अधिक है।
B : दोनों पासों पर संख्या 2 प्रकट होती है।
C : प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
इन घटनाओं के कौन-कौन से युग्म परस्पर अपवर्जी हैं ?
हल:
जब दो पासे फेंके जाते हैं, तो कुल संभावित परिणामों की संख्या = 6 x 6 = 36
A = प्राप्त संख्याओं का योग 8 से अधिक है।
= {(3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}
B = कम से कम एक पासे पर संख्या 2 प्रकट होती है।
= {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6)}
C = प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
= प्रकट संख्याओं का योग 9 और 12 है जो कि 3 का गुणज है।
= {{3, 6), (6, 3), (4, 5), (5, 4), (6, 6)}
A ∩ C = {3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)} ∩ {(3, 6), (6, 3), (5, 4), (6, 6)}
= {(3, 6), (6, 3), (4, 5), (5,4), (6, 6)}
A ∩ B = {(3, 6), (6, 3), (4, 5), (5, 4), (4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6) ∩ {(1, 2), (3, 2), (2, 1), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5), (2, 6), (6, 2)} = φ
B ∩ C = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (2, 5), (5, 2), (2, 6), (6, 2)} ∩ {(3, 6), (6, 3), (4, 5), (5, 4), (6, 6)} = φ
A ∩ B = φ, B ∩ C = φ अर्थात् A और B, B और C परस्पर अपवर्जी हैं।
परन्तु A ∩ C ≠ φ , अत: A और C परस्पर अपवर्जी नहीं हैं।

प्रश्न 4.
तीन सिक्कों को एक बार उछाला जाता है। मान लीजिए कि घटना “तीन चित्त दिखना” को A से, घटना 2 चित्त और 1 पट् दिखना’ को B से, घटना “3 पट लिखना’ को C से और घटना ‘पहले सिक्के पर चित्त दिखना’ को D से निरूपित किया गया है। बताइए कि इनमें से कौन-सी घटनाएँ
(i) परस्पर अपवर्जी हैं ?
(ii) सरल हैं।
(iii) मिश्र हैं ?
हल:
जब तीन सिक्के उछाले जाते हैं तो प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT},
A : तीन चित्त दिखना = {HHH}
B : दो चित्त और एक पट् दिखना = {HHT, HTH, THH}
C : तीन पट् दिखना = {TTT}
D : पहले सिक्के पर चित्त दिखना = {HHH, HHT, HTH, HTT}
(i) A ∩ B = {HHH} ∩ {HHT, HTH, THH} = φ
A ∩ C = {HHH} ∩ {TTT} = φ
A ∩ D = {HHH} ∩ {HHH, HHT, HTH, HTT} = {HHH} ≠ φ
B ∩ C = {HHT, HTH, THH} ∩ {TTT} = φ
B ∩ D = {HHT, HTH, THH} ∩{HHH, HHT, HTH, HTT} = (HHT, HTH} ≠ φ
C ∩ D = {TTT} ∩ {HHH, HHT, HTH, HTT} = φ
A ∩ B ∩ C = {HHH} ∩ {HHT, HTH, THH} ∩ {TTT}
अत: परस्पर अपवर्जी घटनाएँ।
A और B, A और C, B और C, C और D, A, B और C.
(ii) सरल घटनाएँ : A और C
(iii) मिश्र घटनाएँ : B और D.

प्रश्न 5.
तीन सिक्के एक बार उछाले जाते हैं। वर्णन कीजिए
(i) दो घटनाएँ जो परस्पर अपवर्जी हैं।
(ii) तीन घटनाएँ जो परस्पर अपवर्जी और नि:शेष हैं।
(iii) दो घटनाएँ जो परस्पर अपवर्जी नहीं हैं।
(iv) दो घटनाएँ जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
(v) तीन घटनाएँ जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
हल:
(i) दो घटनाएँ जो परस्पर अपवर्जी हैं।
A = कम से कम दो चित्त प्राप्त करना = {HHH, HHT, HTH, THH}
B = कम से कर्मी पप्रसि (करमा = {TTT, TTH, THT, HTT}
(ii) तीन घटनाएँ A, B, C जो परस्पर अपवर्जी और नि:शेष हैं।
A = अधिक से अधिक एक चित्त प्राप्त करना | = {TTT, TTH, THT, HTT}
B = तथ्यत, 2 चित्त प्राप्त करना = {HHT, HTH, THH}
C = तथ्यतः, 3 चित्त प्राप्त करना = {HHH}
(iii) दो घटनाएँ A और B जो परस्पर अपवर्जी नहीं हैं।
A : अधिकतम 2 पट् प्राप्त करन = {HHH, HHT, HTH, THH, TTH, THT, HTT}
B : तथ्यतः 2 चित्त प्राप्त करना = {HHT, HTH, THH}
A ∩ B = {HHT, HTH, THH} ≠ φ
(iv) दो घटनाएँ A और B जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
A : तथ्यतः एक चित्त प्राप्त करना = {TTH, THT, HTT}
B : तथ्यत: 2 चित्त प्राप्त करना = {HHT, HTH, THH)
(v) तीन घटनाएँ A, B, C जो परस्पर उपवर्जी हैं किन्तु नि:शेष नहीं हैं।
A : तथ्यत: एक पट् प्राप्त करना = {HHT, THT, THH}
B : तथ्यतः 2 पट् प्राप्त करना = {TTH, THT, HTT}
C : तथ्यतः 3 पट् प्राप्त करना = {TTT}
[नोट : घटनाएँ भिन्न-भिन्न भी हो सकती हैं।

प्रश्न 6.
दो पासे फेंके जाते हैं। घटनाएँ A, B और C निम्नलिखित प्रकार से हैं:
A : पहले पासे पर सम संख्या प्राप्त होना।
B : पहले पासे पर विषम संख्या प्राप्त होना।
C : पासों पर प्राप्त संख्याओं का योग ≤ 5 होना।
निम्नलिखित घटनाओं का वर्णन कीजिए:
(i) A’
(ii) B – नहीं
(iii) A या B
(iv) A और B
(v) A किन्तु C नहीं
(vi) B या C
(vii)B और C
(viii) A ∩B’ ∩ C’
हल:
दो सिक्के फेंकने पर प्रतिदर्श समष्टि
S = {(1, 1), (1, 2), …
(1, 6), (2, 1), (2, 2), …
(2, 6), (3, 1), (3, 2), …
(3, 6), (4, 1), (4, 2),…
(4, 6), (5, 1), (5, 2),…
(5, 6), (6, 1), … (6, 6)}
A = पहले पासे पर सम संख्या प्राप्त होगा।
= {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} = A
B = पहले पासे पर विषम संख्या प्राप्त होना।
= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(3, 1), (3, 2), (3, 3), (3, 4),(3, 5), (3, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}
C = पासों पर प्राप्त संख्याओं का योग ≤ 5 होना।
= {(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3),
(3, 1), (3, 2), (4, 1)}
(i) A’ = S – A
= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}
= B
(ii) B-नहीं = B’ = पहले पासे पर विषम संख्या का न होना
= {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
= A
(ii) A या B = A ∪ B = {x : x पहले पासे पर सम संख्या का होना} ∪ {पहले पासे पर विषम संख्या का होना}
= S
(iv) A और B = A ∩ B
= {x : x पहले पासे पर सम संख्या का होना} {पहले पासे पर विषम संख्या का होना}
= φ
(v) A किन्तु C- नहीं
= {x : x पहले पासे पर सम संख्या का होना} – {पासों पर प्राप्त संख्याओं का योग ≤ 5}
A – C= {(2, 1), (2, 2), …, (2, 6), (4, 1), (4, 2), … (4, 2), … (4, 6), (6, 1), (6, 2), …. (6, 6)} – {(1, 1), (1, 2), (1, 3), (1,4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
= {(2, 4), (2, 5), (2, 6), (4, 2), (4, 3),… (4, 6), (6, 1), (6, 2), … (6, 6)}
(vi) B या C = B ∪ C = {x : x, पहले पारसे पर विषम संख्या होगा। ∪ {पासों पर प्राप्त संख्याओं का योग ≤ 5}
= {(1, 1), (1, 2), …, (1, 6), (3, 1), (3, 2), …, (3, 6), (5, 1), (5, 2), … (5, 6)} ∪ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 2), (4, 1)} = {(1,1), (1, 2), … (1, 6), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), … (3, 6), (4, 1), (5,1), (5, 2), (5, 3), … (5, 6).
(vii) B और C अर्थात्
B ∩ C = {(1, 1), … (1, 6), (3, 1), (3, 2),… (3, 6), (5, 1), (5, 2), (5, 3), … (5, 6)} ∩ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), 72, 2) (2, 3), (3, 1), (3, 2), (4, 1)}.
= {(1, 1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2)}
(viii) यहाँ B’ = A
A ∩ B’ = A ∩ A = A
A ∩ B’ ∩ C’ = {(2, 1), (2, 2), … (2, 6), (4, 1), (4, 2),…,(4, 6), (6, 1), (6, 2),… (6, 6)} ∩ {(1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6), (4, 2), (4, 3),…(4, 6), (5, 1), (5, 2),… (5, 6), (6, 1), (6, 2), …. (6, 5)}
= {(2, 4), (2, 5), (2, 6), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

प्रश्न 7.
उपर्युक्त प्रश्न 6 को देखिए और निम्नलिखित में सत्य या असत्य बताइए (अपने उत्तर का कारण दीजिए:
(i) A और B परस्पर अपवर्जी हैं।
(ii) A और B परस्पर अपवर्जी और नि:शेष हैं।
(iii) A = B’
(iv) A और C परस्पर अपवर्जी हैं।
(v) A और B’ परस्पर अपवर्जी हैं।
(vi) A’, B’, C परस्पर अपवर्जी और निःशेष घटनाएँ हैं।
हल:
(i) सत्ये।
A : पहले पासे पर सम संख्या का होना
B : पहले पासे पर विषम संख्या का होना A और B में कोई भी घटना सभान नहीं है।
A ∩ B = φ ⇒ A और B परस्पर अपवर्जी घटनाएँ हैं।
(ii) सत्य :
A : पहले पासे पर सम संख्या होना
B : पहले पासे पर विषम संख्या होना
A ∪ B = पहले पासे पर सम या विषम कोई भी संख्या हो सकती है, दूसरे पासे पर 1 से 6 तक कोई भी संख्या हो सकती है।
अर्थात् A और B परस्पर अपवर्जी और नि:शेष घटनाएँ हैं।
(iii) सत्य :
B’ = {पहले पासे पर विषम संख्या होना}
= पहले पासे पर विषम संख्या न होना
= पहले पासे पर सम संख्या होना।
= A
(iv) असत्य
A = पहले पासे पर सम संख्या होना
C = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
A और C में (2, 1), (2, 2), (2, 3), (4, 1) समान घटनाएँ हैं।
A ∩ C ≠ φ
अतः A और C परस्पर अपवर्जी नहीं हैं।
(v) असत्य B’ = A
A ∩ B’ = A ∩ A = A ≠ φ
A तथा B’ परस्पर अपवर्जी नहीं हैं।
(vi) असत्य A’ = B, B’ = A
A’ ∩ B’ = B ∩ A = φ
परन्तु A’ ∩ C = B ∩ C = {x : x पहले पासे पर विषम संख्या होना} {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
= {(1,1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2)} ≠ φ
B’ ∩ C = A ∩ C [B’ = A]
= {x : x, पहले पासे पर सम संख्या का होना} ∩ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
(2, 1), (2, 2), (2, 3), (4, 1), A और C दोनों में समान घटनाएँ हैं।
B’ ∩ C ≠ φ
अर्थात् A’, B’, और C परस्पर अपवर्जी नहीं हैं और न ही नि:शेष हैं।

प्रश्नावली 16.3

प्रश्न 1.
प्रतिदर्श समष्टि S = {ω1, ω2, ω3, ω4, ω5, ω6} के परिणामों के लिए निम्नलिखित में से कौन से प्रायिकता निर्धारण वैध नहीं हैं:

UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1
हल:
(a) 0.1 + 0.01 + 0.05 + 0.03 + 0.01 + 0.2 + 0.6 = 1.00
घटनाओं की दी गयी प्रायिकता को योगफल 1 है।
अतः निर्धारित प्रायिकता वैध है।
(b) दी गयी प्रायिकताओं का योगफल
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1.1
दी गयी प्रायिकता वैध है।
(c) दी हुई प्रायिकताओं का योग’ = 0.1 + 0.1 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7 = 2.7
यह एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।
(d) किसी भी घटना की प्रायिकता ऋणात्मक नहीं हो सकती। यहाँ पर दो प्रायिकताएँ – 0.1 और -0.2 ऋणात्मक हैं।
अतः दी गयी प्रायिकता वैध नहीं है।
(e) दी गयी प्रायिकताओं का योगफल
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1.2
जो कि एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।

प्रश्न 2.
एक सिक्का दो बार उछाला जाता है। कम से कम एक पट् प्राप्त होने की क्या प्रायिकता है?
हल:
दिए हुए परीक्षण का प्रतिदर्श समष्टि
S = {HH, HT, TH, TT}
कुल सम्भावित परिणामों की संख्या = 4
कम से कम एक पट् प्राप्त करने के तरीके TH, HT, TT = 3
एक सिक्के को दो बार उछालने से कम से कम 1 पट् प्राप्त करने की प्रायिकता =  \frac { 3 }{ 4 }

प्रश्न 3.
एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए:
(i) एक अभाज्य संख्या प्रकट होना।
(ii) 3 या 3 से बड़ी संख्या प्रकट होना।
(iii) 1 या 1 से छोटी संख्या प्रकट होना।
(iv) छः से बड़ी संख्या प्रकट होना।
(v) छः से छोटी संख्या प्रकट होना।
हल:
एक पासे को फेंकने में परीक्षण का प्रतिदर्श समष्टि
S = {1, 2, 3, 4, 5, 6}
अर्थात् कुल सम्भावित परिणाम
n(S) = 6
(i) अभाज्य संख्याएँ 2, 3, 5 हैं।
n (A) = 3
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 3

प्रश्न 4.
ताश की एक गड्डी के 52 पत्तों में से एक पत्ता यादृच्छया निकाला गया है।
(a) प्रतिदर्श समष्टि में कितने बिन्दु हैं ?
(b) पत्ते का हुकुम का इक्का होने की प्रायिकता क्या है ?
(c) प्रायिकता ज्ञात कीजिए कि पत्ता
(i) इक्का है
(ii) काले रंग का है।
हल:
(a) ताश की गड्डी में कुल 52 पत्ते होते हैं। जब एक पत्ता निकाला जाता है तो इसके प्रतिदर्श समष्टि में 52 बिन्दु होते हैं।
(b) ताश की गड्डी में हुकुम का एक इक्का होता है। यदि एक पत्ता निकालने की घटना को A से दर्शाया जाए।
n(A) = 1, n(S) = 52
P(A) = P(हुकुम का इक्का ) =  \frac { 1 }{ 52 }
(c) (i) यदि B इक्का निकालने को दर्शाता हो तो
n(B) = 4 [ताश की गड्डी में 4 इक्के होते हैं।]
n(S) = 52
P(B) =  \frac { 1 }{ 13 }
(ii) C काले रंग हुकुम की पत्ते आने की घटना को दर्शाता है।
n(C) = 26 [ ताश की गड्डी में 26 काले पत्ते होते हैं।
n(C) = 52
P(C) =  \frac { 26 }{ 52 }\frac { 1 }{ 2 }

प्रश्न 5.
एक अनभिनत (unbiased) सिक्का जिसके एक तल पर 1 और दूसरे तल पर 6 अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग
(i) 3 है
(ii) 12 है।
हल:
एक पासे पर 1 व 6 अंकित है और दूसरे पर 1, 2, 3, 4, 5, 6.
प्रतिदर्श समष्टि = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
(i) दी गयी., संख्याओं का योग 3 घटना (1, 2) से प्राप्त होता है।
अनुकूल परिणामों की संख्या = 1
प्रायिकता जेब प्राप्त संख्याओं का योग 3 है =  \frac { 1 }{ 12 }
(ii) दी गयी संख्याओं को योग घटना (6, 6) से प्राप्त होता है। यहाँ अनुकूल परिणामों की संख्या = 1
प्रायिकता जब प्राप्त संख्याओं का योग 12 है =  \frac { 1 }{ 12 }

प्रश्न 6.
नगर परिषद् में चार पुरुष के छः स्त्रियाँ हैं। यदि एक समिति के लिए यादृच्छया एक परिषद् सदस्य चुना गया है तो एक स्त्री के चुने जाने की कितनी सम्भावना है ?
हल:
नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं।
उनमें से किसी एक को चुनने के तरीके = 10 { C }_{ 1 }
कुल सम्भावित परिणामों की संख्या = 10
कुल 6 स्त्रियाँ हैं। उनमें से एक स्त्री को चुनने के तरीके = 6.
अनुकूल परिणामों की संख्या = 6
एक स्त्री को चुने जाने की प्रायिकता =  \frac { 6 }{ 10 }\frac { 6 }{ 5 }

प्रश्न 7.
एक अनभिनत सिक्के को चार बार उछाला जाता है और एक व्यक्ति प्रत्येक चित्त पर एक रूपया जीतता है और प्रत्येक पट् पर 1.50 रू हारता है। इस परीक्षण के प्रतिदर्श समष्टि से ज्ञात कीजिए कि आप चार उछालों में कितनी विभिन्न राशियाँ प्राप्त कर सकते हैं। साथ ही इन राशियों से प्रत्येक की प्रायिकता भी ज्ञात कीजिए।
हल:
सिक्के की उछाल में पाँच तरीकों से चित्त प्राप्त कर सकते हैं। जो निम्न प्रकार हैं।
कुल संभावित परिणाम = {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}
(i) कोई भी चित्त प्राप्त नहीं होता या चारों पट् प्राप्त होते हैं।
चारों पट् के आने पर हानि = 4 x 1.50 = 6
चार पट् प्राप्त करने के तरीके (TTTT) = 1
कुल सम्भावित परिणाम = 16
चार पट् प्राप्त करने की प्रायिकता =  \frac { 1 }{ 16 }

(ii) जब एक चित्त और 3 पट् प्राप्त होते हैं।
हानि = 3 x 1.50 – 1 x 1 = 4.50 – 1.00 = 3.50 रू
एक चित्त और 3.पट् इस प्रकार आ सकते हैं:
{TTTH, THT, THTT, HTTT}
4 तरीकों से एके चित्त और 3 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
एक चित्त प्राप्त करने की प्रायिकता =  \frac { 4 }{ 16 }\frac { 1 }{ 4 }

(iii) जब 2 चित्त और 2 पट् प्रकट होते हैं।
हानि = 2 x 1.5 – 1 x 2 = 3 – 2 = 1 रू
2 चित्त और 2 पट् इस प्रकार प्राप्त हो सकते हैं।
{ÉHTT, HTHT, HTTH, THHT, THTH, TTHH}
छः तरीकों से 2 चित्त और 2 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
2 चित्त प्राप्त करने की प्रायिकता =  \frac { 6 }{ 16 }\frac { 3 }{ 8 }

(iv) जब 3 चित्त और 1 पट् प्रकट होता है, तब
लाभ = 3 x 1 – 1 x 1.5 = 3 – 1.30 = 1.50 रू
3 चित्त प्राप्त करने के तरीके = {HHHT, HHHH, HTHH, THHH}
चार तरीकों से 3 चित्त और 1 पट् प्राप्त होता है।
कुल सम्भावित परिणाम = 16
3 चित्त प्राप्त करने की प्रायिकता =  \frac { 4 }{ 16 }\frac { 1 }{ 4 }

(v) चारों चित्त एक तरीके से प्राप्त कर सकते हैं, तब
लाभ = 4 x 1 = 4 रू
कुल सम्भावित परिणाम = 16
चार चित्त प्राप्त करने की प्रायिकता =  \frac { 1 }{ 16 }

प्रश्न 8.
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए:
(i) तीन चित्त प्रकट होना
(ii) 2 चित्त प्रकट होना
(iii) न्यूनतम 2 चित्त प्रकट होना
(iv) अधिकतम 2 चित्त प्रकट होना
(v) एक भी’चित्त प्रकट न होना
(vi) 3 पट् प्रकट होना
(vii) तथ्यतः 2पट् प्रकट होना
(viii) कोई भी पट् प्रकट न होना,
(ix) अधिकतम पट् प्रकट होना
हल:
यदि 3 सिक्के उछाले जाते हैं तो परीक्षण का प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
कुल सम्भावित परिणाम = 8
(i) तीन चित्त {HHH} एक तरीके से प्रकट होता है।
अत: 3 चित्त प्राप्त करने की प्रायिकता =  \frac { 1 }{ 8 }

(ii) 2 चित्त या 2 चित्त 1 पट् प्राप्त करने के HHT, HTH, THH तीन तरीके हैं।
कुल सम्भावित परिणाम = 8
2 चित्त प्रकट होने की प्रायिकता =  \frac { 3 }{ 8 }

(iii) न्यूनतम 2 चित्त प्राप्त करने के लिए
2 चित्त 1 पट् या 3 चित्त आएंगे
न्यूनतम 2 चित्त HHT, HTH, THH, HHH, चार तरीकों से प्रकट हो सकते हैं।
अतः न्यूनतम 2 चित्त प्रकट होने की प्रायिकता =  \frac { 4 }{ 8 }\frac { 1 }{ 2 }

(iv) अधिकतम 2 चित्त, इस प्रकार प्रकट होंगे।
(a) कोई चित्त नहीं या तीन पट्
(b) एक चित्त 2 पट्
(c) 2 चित्त 1 पट्
यह {TTT, HTT, THT, TTH, HHT, HTH, THH} सात तरीकों से प्रकट हो सकते हैं।
कुल संभावित परिणाम = 8
अधिकतम 2 चित्त प्रकट होने की प्रायिकता =  \frac { 7 }{ 8 }

(v) एक भी चित्त न आने का अर्थ है तीन पट् प्रकट होना जो (TTT) एक तरीके से हो सकता है।
कुल संभावित परिणाम = 8
अतः एक भी चित्त न आने की प्रायिकता =  \frac { 1 }{ 8 }

(vi) तीन पट् (TTT) एक तरीके से प्रकट हो सकते हैं।
तीन पट् प्रकट होने की प्रायिकता =  \frac { 1 }{ 8 }

(vii) तथ्यत: 2 सट् (TTH, THT, HTT) तीन तरीकों से प्राप्त हो सकते हैं।
कुल संभावित परिणाम = 8
दो पट् प्रकट होने की प्रायिकता =  \frac { 3 }{ 8 }

(viii) कोई पट् नहीं का अर्थ है तीनों चित्त प्रकट होते हैं तो (HHH) 1 तरीके से ही हो सकता है।
कुल संभावित परिणाम = 8
कोई पट् प्रकट न होने की प्रायिकता =  \frac { 1 }{ 8 }

(ix) अधिकतम दो पट् प्रकट होना = तीनों पट् प्रकट नहीं होते।
तीनों पट् प्रकट होने की प्रायिकता =  \frac { 1 }{ 8 }
अधिकतम दो पट् प्रकट होने की प्रायिकता = 1 – (तीनों पट् प्रकट होने की प्रायिकता)
= 1 –  \frac { 1 }{ 8 }\frac { 7 }{ 8 }

प्रश्न 9.
यदि किसी घटना A की प्रायिकता  \frac { 2 }{ 11 } है तो घटना A – नहीं’ की प्रायिकता ज्ञात कीजिए।
हल:
P(A) =  \frac { 2 }{ 11 }
P(A – नहीं) = P (A’) = 1 – P(A)
= 1 –  \frac { 2 }{ 11 }\frac { 9 }{ 11 }

प्रश्न 10.
शब्द ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर
(i) एक स्वर (vowel) है
(ii) एक व्यंजन (consonant) है।
हल:
शब्द ASSASSINATION में कुल 13 अक्षर हैं जिसमें (AAAIIO) 6 स्वर और (SSSSNNT) 7 व्यंजन है।
n(S) = 13
स्वरों की संख्या = 6
एक स्वर चुनने की प्रायिकता =  \frac { 6 }{ 13 }
(ii) व्यंजनों की संख्या = 7
n(S) = 13
एक व्यंजन चुनने की प्रायिकता =  \frac { 7 }{ 13 }

प्रश्न 11.
एक लाटरी में एक व्यक्ति 1 से 20 तक की संख्याओं में से छः भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गईं छः संख्याएँ उन छः संख्याओं से मेल खाती हैं जिन्हें लाटरी समिति ने पूर्व निर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है ?
हल:
1 से 20 तक की प्राकृत संख्याओं में से 6 संख्या चुनने के तरीके = 20 { C }_{ 6 }
\frac { 20\times 19\times 18\times 17\times 16\times 15 }{ 1\times 2\times 3\times 4\times 5\times 6 }
= 38760
केवल एक ही अनुकूल परिणाम है।
अतः लाटरी जीतने की प्रायिकता =  \frac { 1 }{ 38760 }

प्रश्न 12.
जाँच कीजिए कि निम्न प्रायिकताएँ PA) और P(B) युक्ति संगत (consistency) परिभाषित की गई हैं।
(i) P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
(ii) PA) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
हल:
(i) दिया है : P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
यहाँ P(A ∩ B) = 0.6 > P(A)
अत: P(A) और P(B) युक्ति संगत नहीं है।
(ii) यहाँ पर P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
अब P(A ∩ B) = P(A) + P(B) – P(A ∪ B) = 0.5 + 0.4 – 0.8
P(A ∩ B) = 0.1,
अत: P(A) और P(B) युक्ति संगत है।

प्रश्न 13.
निम्नलिखित सारणी में खाली स्थान भरिए:
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 13
हल:
(i) P(A) =  \frac { 1 }{ 3 } , P(B) =  \frac { 1 }{ 5 } , P(A ∩ B) =  \frac { 1 }{ 15 } , P(A ∪ B) = ?
P(A ∪ B) = P(A) + PB) – P(A ∩ B)
\frac { 1 }{ 3 }\frac { 1 }{ 5 } –  \frac { 1 }{ 15 }
\frac { 8 }{ 15 } –  \frac { 1 }{ 15 }
\frac { 7 }{ 15 }
(ii) P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.6 = 0.35 + P(B) – 0.25
P(B) = 0.6 – 0.35 + 0.25 = 0.5.
(iii) P (A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.7 = 0.5 + 0.35 – P(A ∩ B)
P(A ∩ B) = 0.5 + 0.35 – 0.7 = 0.15.

प्रश्न 14.
P(A) =  \frac { 3 }{ 5 } और P(B) =  \frac { 1 }{ 5 } द्विा गया है। यदि A और B परस्पर अपवर्जी घटनाएँ हैं, तो P(A या B) ज्ञात कीजिए।
हल:
A और B परस्पर अपवर्जी घटनाएँ हैं, तब
P(A ∩ B) = 0
P(A) =  \frac { 3 }{ 5 } , P(B) =  \frac { 1 }{ 5 }
P(A या B) = P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
P(A ∪ B) =  \frac { 3 }{ 5 }\frac { 1 }{ 5 } – 0 = 3

प्रश्न 15.
यदि E और Fघटनाएँ इस प्रकार की हैं कि P(E) =  \frac { 1 }{ 4 } , P(F) =  \frac { 1 }{ 2 } , और P(E और F) =  \frac { 1 }{ 8 } तो ज्ञात कीजिए
(i) P(E या F)
(ii) P(E- नहीं और F- नहीं)।
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 15

प्रश्न 16.
घटनाएँ E और F इस प्रकार हैं कि P(E-नहीं और F- नहीं) = 0.25, बताइए कि E और F परस्पर अपवर्जी हैं या नहीं।
हल:
PE – नहीं और F – नहीं) = P(E’ ∩ F’)
= P[(E ∪ F)’]
अर्थात् = 1 – P(E ∪ F) = 0.25
P(E ∪ F) = 1 – 0.25 = 0.75
P(E ∪ F) ≠ 0 इसलिए E और F परस्पर अपवर्जी नहीं है।

प्रश्न 17.
घटनाएँ A और B इस प्रकार हैं कि P(A) = 0.42, P(B) = 0.48 और P(A और B) = 0.16, ज्ञात कीजिए:
(i) P(A – नहीं)
(ii) P (B- नहीं)
(iii) P(A या B)
हल:
P(A) = 0.42, P(B) = 0.48.
P(A और B) = P(A ∩ B) = 0.16
(i) P(A – नहीं) = P(A’) = 1 – P(A) = 1 – 0.42 = 0.58.
(ii) P(B – नहीं) = P(B’) = 1 – P(B) = 1 – 0.48 = 0.52.
(iii) P(A या B) = P (A ∪ B) = P(A) + P(B) – P(A ∩ B)
= 0.42 + 0.48 – 0.16 = 0.90 – 0.16 = 0.74.

प्रश्न 18.
एक पाठशाला की कक्षा XI के 40% विद्यार्थी गणित पढ़ते हैं और 30% जीव विज्ञान पढ़ते हैं। कक्षा के 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं । यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है, तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
हल:
एक पाठशाला के 40% विद्यार्थी गणित पढ़ते हैं।
गणित पढ़ने वाले विद्यार्थी की प्रायिकता P(M) =  \frac { 40 }{ 100 } = 0.4
30% विद्यार्थी जीव विज्ञान पढ़ते हैं।
जीव विज्ञान पढ़ने वाले विद्यार्थी की प्रायिकता P(B) =  \frac { 30 }{ 100 } = 0.3
10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं।
गणित और जीव विज्ञान वाले विद्यार्थियों की प्रायिकता, P(M ∩B)
\frac { 10 }{ 100 } = 0.1
अब एक विद्यार्थी यादृच्छया चुना गया हो, तब उस विद्यार्थी द्वारा गणित या जीव विज्ञान लिए गए विषय की प्रायिकता
P(M ∪ B) = P(M) + P(B) – P(M ∩ B) = 0.4 + 0.3 – 0.1 = 0.6

प्रश्न 19.
एक प्रवेश परीक्षा की दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायिकता 0.8 है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता 0.7 है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता 0.95 है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना A और B क्रमशः पहले और दूसरे परीक्षण में उत्तीर्ण होने को दर्शाते हैं।
P(A) = 0.8, P(B) = 0.7
कम से कम एक परीक्षण में उत्तीर्ण होने की प्रायिकता = 1 – P(A ∩ B’) = 0.95
P(A’ ∩ B’) = 1 – 0.95 = 0.05.
A’ ∩ B’ = (A ∪ B)’ (डी-मोर्गन नियम से)
P(A’ ∩ B’) = P(A ∪ B)’ = 1 – P(A ∪ B) = 0.05
P(A ∪ B) = 1 – 0.05 = 0.95
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.95 = 0.8 + 0.7 – P(A ∩ B)
P(A ∩ B) = 1.5 – 0.95 = 0.55
इस प्रकार दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता = 0.55.

प्रश्न 20.
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिन्दी दोनों विषयों को उत्तीर्ण करने की प्रायिकता 0.5 है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता 0.1 है। यदि अंग्रेजी की परीक्षा उत्तीर्ण करने की प्रायिकता 0.75 हो तो हिन्दी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना E और H क्रमशः अंग्रेजी और हिन्दी में पास करने को दर्शाते हैं।
तब अंग्रेजी और हिन्दी दोनों परीक्षा में उत्तीर्ण होने की प्रायिकता
P(E ∩ H) = 0.5
दोनों में से कोई परीक्षा उत्तीर्ण न करने की प्रायिकता = P(E’ ∩ H’) = 0.1
P[(E U H)’] = 1 – P(E ∪ H) = 0.1
P(E ∪ H) = 1 – 0.1 = 0.9
अंग्रेजी परीक्षा में उत्तीर्ण होने की प्रायिकता = P(E) = 0.75
अतः P(E ∪H) = 0.9, P(E) = 0.75, P(E ∩ H) = 0.5
P(E ∪ H) = P(E) + P(H) – P(E ∩ H)
0.9 = 0.75 + P(H) – 0.5
P(H) = 0.9 + 0.5 – 0.75 = 1.4 – 0.75 = 0.65
अतः हिन्दी परीक्षा में उत्तीर्ण होने की प्रायिकता = 0.65.

प्रश्न 21.
एक कक्षा के 60 विद्यार्थियों में से 30 ने एन.सी.सी. (NCC), 32 ने एन.एस.एस. (NSS) और 24 ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
(i) विद्यार्थी ने एन.सी.सी. या एन.एस.एस. को चुना है।
(ii) विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।
(iii) विद्यार्थी ने एन.एस.एस. को चुना है किन्तु एन.सी.सी को नहीं चुना है।
हल:
माना A और B क्रमशः एन.सी.सी. और एन.एस.एस. चुनने की घटना को दर्शाते हैं।
विद्यार्थियों की कुल संख्या = 60
एन.सी.सी. चुनने वाले विद्यार्थियों की संख्या = 30
एन.सी.सी. चुनने की प्रायिकता P(A) =  \frac { 30 }{ 60 }\frac { 1 }{ 2 }
एन.एस.एस. चुनने वाले विद्यार्थियों की संख्या = 32
एन.एस.ए. चुने जाने की प्रायिकता P(B) =  \frac { 32 }{ 60 }
एन.सी.सी. और एन.एस.एस. चुनने वालों की संख्या = 24
एन.सी.सी. और एन.एस.एस. चुनने की प्रायिकता =  \frac { 24 }{ 60 }
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 21

अध्याय 16 पर विविध प्रश्नावली

प्रश्न 1.
एक डिब्बे में 10 लाले, 20 नीली व 30 हरी गोलियाँ रखी हैं। डिब्बे से 5 गोलियाँ यादृच्छया निकाली जाती हैं। प्रायिकता क्या है कि
(i) सभी गोलियाँ नीली हैं?
(ii) कम से कम एक गोली हरी है ?
हल:
एक डिब्बे में 10 लाल, 20 नीली तथा 30 हरी कुल 60 गोलियाँ हैं।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 1
UP Board Solutions for Class 11 Maths Chapter 16 Probability 1.1

प्रश्न 2.
ताश के 52 पत्तों की एक अच्छी तरह फेंटी गई गड्डी से 4 पत्ते निकाले जाते हैं। इस बात की क्या प्रायिकता है कि निकाले गए पत्तों में 3 ईंट और एक हुकुम का पत्ता है ?
UP Board Solutions for Class 11 Maths Chapter 16 Probability 2

प्रश्न 3.
एक पासे के दो फलकों में से प्रत्येक पर संख्या 1 अंकित है। तीन फलकों में प्रत्येक पर संख्या 2 अंकित है और एक फलक पर संख्या 3 अंकित है। यदि पासा एक बार फेंका जाता है, तो निम्नलिखित ज्ञात कीजिए (i) P(2)
(ii) P(1 या 3)
(ii) P(3 – नहीं)
हल:
पासे पर कुल संभावित परिणाम = 6
(i) 2 अंक 3 फलकों पर अंकित है।
2 प्राप्त करने के 3 तरीके हैं
UP Board Solutions for Class 11 Maths Chapter 16 Probability 3

प्रश्न 4.
एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी इनाम न मिलने की प्रायिकता क्या है यदि आप
(a) एक टिकटं खरीदते हैं
(b) दो टिकट खरीदते हैं
(c) 10 टिकट खरीदते हैं ?
हल:
टिकटों की संख्या जिन पर इनाम नहीं है = 10000 – 10 = 9990
कुल टिकटों की संख्या = 10000
UP Board Solutions for Class 11 Maths Chapter 16 Probability 4
UP Board Solutions for Class 11 Maths Chapter 16 Probability 4.1

प्रश्न 5.
100 विद्यार्थियों में से 40 और 60 विद्यार्थियों के दो वर्ग बनाए गए हैं। यदि आप और आपका एक मित्र 100 विद्यार्थियों में हैं तो प्रायिकता क्या है कि
(a) आप दोनों एक ही वर्ग में हों।
(b) आप दोनों अलग-अलग वर्गों में हों।
हल:
माना दो वर्ग A और B हैं जिनमें क्रमशः 40 और 60 विद्यार्थी हैं।
(i) मान लीजिए दोनों विद्यार्थी वर्ग A में आते हैं।
98 विद्यार्थियों में से 38 विद्यार्थी चुने जाते हैं।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 5
UP Board Solutions for Class 11 Maths Chapter 16 Probability 5.1

प्रश्न 6.
तीन व्यक्तियों के लिए तीन पत्र लिखवाए गए हैं और प्रत्येक के लिए पता लिखा एक लिफाफा है। पत्रों को लिफाफों में यादृच्छया इस प्रकार डाला गया कि प्रत्येक लिफाफे में एक ही पत्र है। प्रायिकता ज्ञात कीजिए कि कम से कम एक पत्र अपने सही लिफाफे में डाला गया है।
हल:
मान लीजिए लिफाफों को A, B, C और संगत पत्रों को क्रमशः a, b, c से निरूपित किया गया है।
(i) एक पत्र उसके संगत लिफाफे में और दूसरे दो गलत लिफाफे में रखने के तरीके
(Aa, Bc, Cb), (Ac, Bb, Ca), (Ab, Ba, Cc)
(ii) यदि दो पत्र संगत (ठीक) लिफाफों में रखे गए हैं तो तीसरा भी संगत (ठीक) लिफाफे में होगा।
(iii) तीनों पत्र उनकै संगत (ठीक) लिफाफों में रखे जाए (Aa, Bb, Cc) एक तरीका है।
पत्र कम से कम एक संगत लिफाफे में रखे जाने के तरीके 3 + 1 = 4
तीन पत्रों को तीन लिफाफा में रखने के कुल तरीके = 3! = 6
कम से कम एक एत्र संगत लिफाफे में रखे जाने की प्रायिकता =  \frac { 4 }{ 6 }\frac { 2 }{ 3 }

प्रश्न 7.
A और B दो घटनाएँ इस प्रकार हैं कि P(A) = 0.54, P(B) = 0.69 और P(A ∩ B) = 0.35, ज्ञात कीजिए:
(i) P(A ∪B)
(ii) P(A’ ∩ B’)
(iii) P(A ∩ B’)
(iv) P(B ∩ A’)
हल:
P(A) = 0.54, P(B) = 0.69, P(A ∩ B) = 0.35
(i) P(A ∪ B) = P(A) + P(B) – P(A ∩ B) = 0.54 + 0.69 – 0.35 = 0.88
(ii) P(A’ ∩ B’) = P[(A ∪ B)’] = 1 – P(A ∪ B) = 1 – 0.88 = 0.12.
(iii) P(A ∩ B’) = P(A) – P(A ∩ B) = 0.54- 0.35 = 0.19.
(iv) P(B ∩ A’) = P(B) – P(B ∩ A) = 0.69 – 0.35 = 0.34.

प्रश्न 8.
एक संस्था के कर्मचारियों में से 5 कर्मचारियों का चयन प्रबन्ध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्यौरा निम्नलिखित है:
UP Board Solutions for Class 11 Maths Chapter 16 Probability 8
इस समूह से प्रवक्ता पद के लिए यादृच्छया एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या 35 वर्ष से अधिक आयु का होने की प्रायिकता क्या है ?
हल:
माना A पुरुष के चयन और B व्यक्ति की आयु 35 वर्ष से अधिक को दर्शाते हैं।
पुरुषों की कुल संख्या = 3
35 वर्ष से अधिक आयु के कुल लोग = 2
35 वर्ष से अधिक आयु का पुरुष 1 है।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 8.1

प्रश्न 9.
यदि 0, 1, 3, 5 और 7 अंकों द्वारा 5000 से बड़ी चार अंकों की संख्या का यादृच्छया निर्माण किया गया हो तो पाँच से भाज्य संख्या के निर्माण की क्या प्रायिकता है जब:
(i) अंकों की पुनरावृत्ति नहीं की जाए ?
(ii) अंकों की पुनरावृत्ति की जाए ?
हल:
(i) जब अंकों की पुनरावृत्ति नहीं होती।
मान लीजिए अंकों के स्थानों को I, II, III, IV से निरूपित किया गया हैं।
5000 से बड़ी संख्या बनाने के लिए स्थान I पर 5 या 7 रखना होगा अर्थात स्थान I को भरने के तरीके = 2
अब 5 अंक शेष रह जाते हैं।
स्थान II, III और IV को 4, 3 व 2 तरीकों से भर सकते हैं।
5000 से बड़ी संख्याएँ = 4 x 3 x 2 = 24 = n(S)
5 से भाज्य संख्याएँ वे हैं जब इकाई (स्थान IV) पर 0 या 5 हो। 5 को स्थान I पर तथा 0 को स्थान IV पर रखने के बाद 3 अंक बचते हैं। स्थान II और III, को 2 x 3 = 6 तरीकों से भरा जा सकता है।
इस प्रकार स्थान I पर जब 5 हो और IV पर 0 हो तो 6 संख्याएँ बनती हैं।
जब स्थान I पर 7 और स्थान IV पर 5 हो तो भी 6 संख्याएँ बनेंगी।
5000 से बड़ी और 5 से भाज्य संख्याएँ। = 6 + 6 + 6 = 18
अतः 5000 से बड़ी और 5 से भाज्य संख्याओं के बनने की प्रायिकता =  \frac { 18 }{ 24 }\frac { 3 }{ 4 }

(ii) जब पुनरावृत्ति की जा सकती है। स्थान I पर 5 या 7 रख सकते है जिससे संख्या 5000 से बड़ी बन सके।
स्थान I को 2 तरीकों से भर सकते हैं।
क्योंकि पुनरावृत्ति की अनुमति है तो प्रत्येक स्थान II, III, IV को 5 तरीकों से भर सकते हैं।
चारों स्थानों को भरने के तरीके या 5000 से बड़ी संख्याएँ = 2 x 5 x 5 x 5 = 250 = n(S)
संख्या यदि 5 से भाज्य है तो इकाई (IV) स्थान पुर 0 या 5 रखना होगा।
इसलिए इकाई के स्थान को 2 तरीकों से भर सकेंते हैं।
बीच के स्थान II और III को 5 x 5 तरीकों से भर सकते हैं।
इस प्रकार 5000 से बड़ी और 5 से भाज्य संख्याएँ = 2 x 5 x 5 x 2 = 100
5000 से बड़ी और 5 से भाज्य बनाने वाली संख्याओं की प्रायिकता =  \frac { 100 }{ 250 }\frac { 2 }{ 5 }

प्रश्न 10.
किसी अटैची के ताले में चार चक्र लगे हैं। जिनमें प्रत्येक पर 0 से 9 तक 10 अंक अंकित हैं। ताला चार अंकों के एक विशेष क्रम (अंकों की पुनरावृत्ति नहीं) द्वारा ही खुलता है। इस बात की क्या प्रायिकता है कि कोई व्यक्ति अटैची खोलने के लिए सही क्रम का पता लगा ले।
हल:
प्रथम स्थान पर कोई अंक 10 तरीकों से ही लाया जा सकता है। यहाँ 0, 1, 2, …. 9 में से कोई भी अंक हो सकता है।
दूसरे, तीसरे व चौथे स्थान को 9 x 8 x 7 तरीकों से भरा जा सकता है।
इस प्रकार चार अंकों की संख्या (जबकि पुनरावृत्ति नहीं की गई है) बनने के तरीके = 10 x 9 x 8 x 7 = 5040
ताले को खोलने के लिए सही संख्या केवल एक ही है।
अटैची को खोलने का सही क्रम ज्ञात करने की प्रायिकता =  \frac { 1 }{ 5040 }

0:00
0:00

casibom-casibom-casibom-sweet bonanza-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir bahis siteleri-aviator-sweet bonanza-slot siteleri-slot siteleri-slot siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-bahis siteleri-casino siteleri-deneme bonusu-sweet bonanza-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-yeni slot siteleri-aviator-bahis siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-slot siteleri-lisanslı casino siteleri-yeni slot siteleri-casibom-grandpashabet-grandpashabet-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-deneme bonusu-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-casino siteleri-casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-