Chapter 6 रेखाएँ और कोण Ex 6.2

प्रश्न 1.
आकृति में, x और y के मान ज्ञात कीजिए । और फिर दर्शाइए कि AB || CD है।


हल:
प्रश्न में दिखाए अनुसार AB तथा CD रेखा को एक तिर्यक रेखा। बिन्दु P पर तथा Q पर प्रतिच्छेदित करती है। अब चित्रानुसार
50° + x = 180° (क्योंकि ये रैखिक युग्म हैं)
या x = 180° – 50°
या x = 130° ….. (i)
या y = 130° ……. (ii)
(क्योंकि ये शीर्षाभिमुख कोण हैं)
समीकरण (i) व (ii) के अनुसार हम देखते हैं कि
x = y
अर्थात् अंतः एकान्तर कोण बराबर हैं।
हम जानते हैं कि यदि एक तिर्यक रेखा दो रेखाओं को इस प्रकार प्रतिच्छेदित करे कि अंतः एकान्तर कोणों के युग्म बराबर हों, तो दो रेखाएँ समान्तर होती हैं। इसी के आधार पर उपर्युक्त प्रश्न में भी यह कहा जा सकता है कि
AB || CD.

प्रश्न 2.
आकृति में, यदि AB || CD, CD || EF और y : Z = 3 : 7 है, तो x का मान ज्ञात कीजिए।

हल:
प्रश्नानुसार
∵ AB||CD
∴ x + y = 180° …..(i)
[क्योंकि दो समान्तर रेखाओं को यदि एक तिर्यक रेखा काटे तो तिर्यक रेखा के एक ही ओर के अन्त:कोणों का योग 180° होता है।]
प्रश्न में दिया है कि AB || CD तथा CD || EF
∴ AB || EF
[क्योंकि एक ही रेखा के समान्तर खींची गई दो रेखाएँ परस्पर समान्तर होती हैं।]
अतः x = z …..(ii)
[क्योंकि समान्तर रेखाओं के लिए एकान्तर अन्त:कोण बराबर होते हैं।]
समीकरण (ii) से x का मान () में प्रतिस्थापित करने पर
z + y = 180° …..(iii)
प्रश्नानुसार y : Z = 3 : 7
अब माना कि y = 3k
∴ z = 7k, जहाँ k > 0 अचर है।
y तथा 2 का यह मान समीकरण (iii) में प्रतिस्थापित करने पर।
7k + 3k = 180°
या 10k = 180°
या k = 180°/10 = 18°
∴ y = 3k या y = 3 × 18° = 54°
तथा = 7k या =7 × 18° = 126°
समीकरण (ii) के अनुसार
x = Z
∴ x = 126°

प्रश्न 3.
आकृति में, यदि AB || CD, EF ⊥ CD और ∠GED = 126° है, तो ∠AGE, ∠GEF और ∠FGE ज्ञात कीजिए।

हल:
प्रश्न में दिए गए चित्र के अनुसार AB || CD तथा GE एक तिर्यक रेखा है।
इसमें ∠AGE = ∠GED (ये एकान्तर कोण हैं)
या ∠AGE = 126° …..(i) 
[∵∠GED = 126° दिया गया है]
या ∠ GEF + ∠ FED = 126°
या ∠ GEF + 90° = 126°
[∵ EF, CD पर लम्ब है (दिया गया है)]
∴ ∠ FED = 90°
या ∠GEF = 126° – 90°
या ∠GEF = 36°
अब ∠AGE + ∠ FGE = 180° (क्योंकि ये रैखिक युग्म हैं)
या 126° + ∠ FGE = 180° [समी. () से ∠AGE = 126°]
या ∠ FGE = 180° – 126°
या ∠FGE = 54°

प्रश्न 4.
आकृति में, यदि PQ || ST, ∠PQR = 110° और ∠RST = 130° है, तो ∠QRS ज्ञात कीजिए।
[संकेत-बिन्दु R से होकर ST के समान्तर एक रेखा खींचिए।]

हल:
प्रश्न में दिए गए चित्र में बिन्दु R से होकर ST के समान्तर एक रेखा RN खींची।
अतः ST || RN
या ∠RST + ∠SRN = 180°
[क्योंकि दो समान्तर रेखाओं के बीच एक तिर्यक रेखा के एक ओर के अंत:कोणों का योग 180° होता है।]
या 130° + ∠SRN = 180°
या ∠SRN = 180° – 130°
या ∠SRN = 50° …..(i)
प्रश्नानुसार दिया गया है कि PQ || ST
तथा की गई रचना से RN || ST
∴ PO || RN
[क्योंकि दो रेखाएँ जो एक ही रेखा के समान्तर हों, वे परस्पर समान्तर होती हैं।]
∵ PO || RN और QR एक तिर्यक रेखा है।
∴ ∠QRN = ∠PQR (एकान्तर कोण हैं)
या ∠QRN = 110°
[∵ ∠PQR = 110° (दिया है)]
∴ ∠QRN = 110°
या ∠ORS + ∠SRN = 110°
या ∠QRS + 50° = 110° [समीकरण (i) से]
या ∠ QRS = 110° – 50°
या ∠QRS = 60°

प्रश्न 5.
आकृति में, यदि AB || CD, ∠APQ = 50° और ∠PRD = 127° है, तो x और y ज्ञात कीजिए।

हल:
प्रश्न में दिए गए चित्र के अनुसार AB || CD तथा PQ एक तिर्यक रेखा है।
∴ x = ∠APQ (एकान्तर कोण हैं)
या x = 50°
[∵ ∠APQ = 50° दिया गया है]
पुनः चित्र के अनुसार AB || CD तथा PR एक तिर्यक रेखा दोनों को प्रतिच्छेद करती है।
∴ ∠APR = ∠PRD (एकान्तर कोण हैं)
या ∠APQ + ∠QPR = ∠PRD
या 50° + y = 127°
या y = 127° -50°
y = 77°

प्रश्न 6.
आकृति में, PO और RS दो दर्पण हैं जो एक-दूसरे के समान्तर रखे गए हैं। एक आपतन किरण (incident ray) AB, दर्पण PQ से B पर टकराती है और परावर्तित क्रिरण (reflected ray) पथ BC पर चलकर दर्पण RS से C पर टकराती है तथा पुनः CD के अनुदिश परावर्तित हो जाती है। सिद्ध कीजिए कि AB || CD है।

हल:
दिया है-आकृति में PQ और RS दो दर्पण हैं जो एक-दूसरे के समान्तर हैं। एक आपतन किरण AB, दर्पण PQ से B पर टकराती है। CD एक परावर्तित किरण है जो दर्पण RS से परावर्तित होती है।

सिद्ध करना है-AB || CD
उपपत्ति ∵हम जानते हैं कि आपतन कोण = परावर्तन कोण
∴ ∠1 = ∠2
और ∠3 = ∠4……(i)
[यहाँ ∠1 आपाती किरण AB है और अभिलम्ब BL है।]
∴ ∠1 एक आपतन कोण है, ∠2 परावर्तित किरण BC और अभिलम्ब BL के बीच स्थित है। अतः ∠2 परावर्तित कोण है। इसी प्रकार ∠3 और ∠4 क्रमशः आपतन कोण और परावर्तित कोण हैं।
∴ PQ || RS तथा BL ⊥ PQ पर
तथा BL || CM तथा CM ⊥ RS पर
अब समान्तर रेखाएँ BL और CM हैं। एक तिर्यक रेखा BC इनको प्रतिच्छेदित करती है।
∴ ∠2 = ∠3 …..(ii) (एकान्तर कोण हैं)
अब ∠ABC = ∠1 + ∠2
या ∠ABC = ∠2 + ∠2
[क्योंकि ∠1 = ∠2]
या ∠ABC = 2 ∠ 2
और ∠ BCD = ∠3 + ∠4
या ∠BCD = ∠3 + ∠3 [क्योंकि ∠3 = ∠4]
या ∠ BCD = 2 ∠3
लेकिन समीकरण (ii) के अनुसार ∠2 = ∠3
या 2∠2 = 2∠3
या ∠ABC = ∠ BCD ये एकान्तर कोण हैं तथा BC एक तिर्यक रेखा है। अतः AB || CD (इति सिद्धम्)

Leave a Reply

Your email address will not be published. Required fields are marked *

0:00
0:00

casibom-casibom-casibom-casibom-sweet bonanza-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir bahis siteleri-aviator-sweet bonanza-sweet bonanza-slot siteleri-slot siteleri-slot siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-deneme bonusu-