Chapter 6 वर्ग और वर्गमूल

पाठान्तर्गत प्रश्नोत्तर

पाठ्य-पुस्तक पृष्ठ संख्या # 95-96

प्रश्न 1.
निम्न संख्याओं और उनके वर्गों के बारे में विचार कीजिए –
क्या आप इसे पूरा कर सकते हैं?


उपर्युक्त सारणी से क्या आप 1 से 100 के बीच की वर्ग संख्याओं को लिख सकते हैं? क्या 100 तक कोई प्राकृत वर्ग संख्या छूट गई है?
हल:
सारणी को पूरा करना –

1 से 100 के बीच वर्ग संख्याएँ 4, 9, 16, 25, 36, 49, 64 और 81 हैं।
हाँ, 100 तक दो प्राकृत वर्ग संख्याएँ छूट गई हैं। ये प्राकृत वर्ग संख्याएँ 1 और 100 हैं।

पाठ्य-पुस्तक पृष्ठ संख्या # 96

प्रयास कीजिए (क्रमांक 6.1)

प्रश्न 1.
दी गई संख्याओं के बीच की पूर्ण वर्ग संख्याएँ ज्ञात कीजिए।

  1. 30 और 40
  2. 50 और 60

हल:
1. ∴ 5 x 5 = 25; 6 x 6 = 36; 7×7 = 49.
∴ 30 और 40 के बीच अभीष्ट पूर्ण वर्ग संख्या 36 है।

2. ∴ 7 x 7 = 49; 8 x 8 = 64
∴ 50 और 60 के बीच कोई भी पूर्ण वर्ग संख्या नहीं

वर्ग संख्याओं के गुणधर्म

प्रश्न 1.
निम्नलिखित सारणी में 1 से 20 तक की वर्ग संख्याओं को दिखाया गया है।

उपर्युक्त सारणी में वर्ग संख्याओं का अध्ययन कीजिए। वर्ग संख्याओं का अन्तिम अंक (यानी वर्ग संख्याओं के इकाई स्थान का अंक) क्या है?
क्या हम कह सकते हैं कि यदि एक संख्या 0, 1, 4, 5, 6 या 9 पर समाप्त होती है, तो वह एक वर्ग संख्या होगी? इस बारे में सोचिए।
हल:
वर्ग संख्याओं का अन्तिम अंक या तो 0, 1, 4, 5, 6 है या 9 है। और इनमें से किसी भी संख्या के वर्ग का अन्तिम अंक 2, 3, 7 या 8 नहीं है।

हम यह नहीं कह सकते हैं कि यदि एक संख्या 0, 1, 4, 5, 6 या 9 पर समाप्त होती है, तो वह एक वर्ग संख्या ही होगी। वास्तव में जिन संख्याओं के अन्तिम अंक 0, 1, 4, 5, 6 या 9 हैं वे संख्याएँ वर्ग हो भी सकती है और वर्ग नहीं भी हो सकती हैं। जैसे-10, 11, 14, 15, 19, 21, 24, 29 इत्यादि वर्ग संख्याएँ नहीं हैं।

पाठ्य-पुस्तक पृष्ठ संख्या # 97

प्रयास कीजिए (क्रमांक 6.2)

प्रश्न 1.
क्या हम कह सकते हैं कि निम्न संख्याएँ पूर्ण वर्ग संख्याएँ हैं? हम कैसे जानते हैं?

  1. 1057
  2. 23453
  3. 7928
  4. 222222
  5. 1069
  6. 2061.

पाँच ऐसी संख्याएँ लिखिए जिनके इकाई स्थान को देखकर आप बता सकें कि ये संख्याएँ वर्ग संख्याएँ नहीं हैं।
हल:
संख्याओं –

  1. 1057
  2. 23453
  3. 7928
  4. 222222 अन्तिम अंक अर्थात् इकाई स्थान के अंक 0, 1, 4, 5, 6 या 9 नहीं हैं। अतः ये पूर्ण संख्याएँ नहीं हैं।
  5. चूँकि संख्या 1069 का अन्तिम अंक 9 है। अतः यह संख्या पूर्ण वर्ग हो भी सकती है और पूर्ण वर्ग नहीं भी हो सकती है।
    ∴ 322 = 32 x 32 = 1024 और 332 = 33 x 33 = 1089
    ∴ 1069 पूर्ण वर्ग नहीं है।
  6. चूँकि संख्या 2061 का अन्तिम अंक 1 है, अतः यह संख्या पूर्ण वर्ग हो भी सकती है। और नहीं भी हो सकती है।
    ∴ 452 = 45 x 45 = 2025 और 462 = 46 x 46 = 2116
    ∴ 2061 पूर्ण वर्ग नहीं है।

22, 33, 57, 268 और 193 ऐसी संख्याएँ हैं जिनके इकाई स्थान को देखकर हम बता सकते हैं कि ये पूर्ण वर्ग नहीं हैं।

प्रश्न 2.
पाँच ऐसी संख्याएँ लिखिए जिनके इकाई स्थान को देखकर आप नहीं बता सकते कि वे वर्ग संख्याएँ हैं या नहीं।
हल:
संख्याएँ 1331, 2744, 3375, 17576 एवं 24389 ऐसी संख्याएँ हैं जिनके इकाई स्थान को देखकर यह नहीं कहा जा सकता है कि ये वर्ग संख्याएँ हैं या नहीं।

प्रश्न 3.
निम्नलिखित वर्ग संख्याएँ अंक 1 पर समाप्त होती है –

इनके अलावा अगली दो वर्ग संख्याएँ लिखिए जो 1 पर उनकी संगत संख्याओं पर समाप्त होती हैं।
हल:
अगली दो वर्ग संख्याएँ 841 और 961 हैं जो 1 पर समाप्त होती हैं। इनकी संगत संख्याएँ क्रमशः 29 और 31 हैं।

प्रयास कीजिए (क्रमांक 6.3)

प्रश्न 1.
1232, 772, 822, 1612, 1092 में से कौन-सी संख्या अंक 1 पर समाप्त होगी?
हल:
∴ जिन संख्याओं के इकाई स्थान पर 1 या 9 अंक होते हैं, उन संख्याओं के वर्ग 1 पर समाप्त होते हैं।
अतः 1612 और 1092 अंक 1 पर समाप्त होंगे।

पाठ्य-पुस्तक पृष्ठ संख्या # 98

प्रश्न 1.
क्या आप इस प्रकार के कुछ और नियम, सारणी में लिखी गई संख्याओं एवं उनके वर्गों के अवलोकन से ज्ञात कर सकते हैं?
हल:
हाँ, जो संख्याएँ 0 और 5 पर समाप्त होती हैं, उन संख्याओं के वर्ग क्रमशः 0 और 5 पर ही समाप्त होंगे।

प्रयास कीजिए (क्रमांक 6.3)

प्रश्न 1.
निम्नलिखित में से कौन-सी संख्याओं के इकाई स्थान पर 6 अंक होगा –

  1. 192
  2. 242
  3. 262
  4. 362
  5. 342.

हल:
वे संख्याएँ जिनके इकाई स्थान पर 4 या 6 अंक होता है, उन संख्याओं के वर्गों के इकाई स्थान पर 6 अंक होगा।

  1. (i) चूँकि संख्या 19 के इकाई स्थान पर 4 या 6 नहीं है, अतः 192 के इकाई स्थान पर 6 अंक नहीं होगा।
  2. अब चूँकि संख्याएँ (ii) 24 और (v) 34, अंक 4 पर समाप्त होती हैं, अतः इनके वर्गों के इकाई स्थान पर 6 अंक होगा।
  3. इसी प्रकार संख्याएँ (iii) 26 और (iv) 36, अंक 6 पर समाप्त होती हैं, अतः इनके वर्गों के इकाई स्थान पर, अंक 6 होगा।
  4. इस प्रकार, (ii) 242, (ii) 262, (iv) 362, (v) 342 के इकाई स्थान पर अंक 6 होगा।

प्रयास कीजिए (क्रमांक 6.4)

प्रश्न 1.
निम्नलिखित संख्याओं के वर्ग करने पर उनके इकाई स्थान पर क्या होगा?

  1. 1234
  2. 26387
  3. 52698
  4. 99880
  5. 21222
  6. 9106

हल:

  1. संख्या 1234 के वर्ग करने पर, इसके इकाई स्थान पर 6 होगा।
  2. संख्या 26387 के वर्ग करने पर, इसके इकाई स्थान पर 9 होगा।
  3. संख्या 52698 के वर्ग करने पर, इसके इकाई स्थान पर 4 होगा।
  4. संख्या 99880 के वर्ग करने पर, इसके इकाई स्थान पर 0 होगा।
  5. संख्या 21222 के वर्ग करने पर, इसके इकाई स्थान पर 4 होगा।
  6. संख्या 9106 के वर्ग करने पर, इसके इकाई स्थान पर 6 होगा।

प्रश्न 1.
यदि एक संख्या के अन्त में तीन शून्य हों, तो उसके वर्ग में कितने शून्य होंगे? क्या आपने, संख्या के अन्त में शून्यों की संख्या और उसके वर्ग के अन्त में शून्यों की संख्या पर ध्यान दिया?
हल:
उस संख्या के वर्ग में छह शून्य होंगे। हाँ, हमने वर्ग के अन्त में शून्यों की संख्या पर ध्यान दिया है। जिस संख्या के अन्त में जितने शून्य होते हैं, उस संख्या के वर्ग के अन्त में उससे दुगुने शून्य होते हैं।

प्रश्न 2.
क्या आप कह सकते हैं कि वर्ग संख्याओं के अन्त में शून्यों की संख्या केवल सम संख्या होती है।
हल:
हाँ, हम यह कह सकते हैं कि वर्ग संख्याओं के अन्त में शून्यों की संख्या केवल सम संख्या होती है।

प्रश्न 3.
संख्या और उनके वर्गों के लिए सारणी 1(वर्ग संख्याओं के गुणधर्म) देखिए। सम संख्याओं के वर्गों एवं विषम संख्याओं के वर्गों के बारे में आप क्या कह सकते हैं?
हल:
सारणी 1 से हम यह निष्कर्ष निकालते हैं कि –

  1. सम संख्याओं के वर्ग सदैव सम होते हैं।
  2. विषम संख्याओं के वर्ग सदैव विषम होते हैं।

प्रयास कीजिए (क्रमांक 6.5)

प्रश्न 1.
निम्नलिखित में से किन संख्याओं के वर्ग विषम संख्या/सम संख्या होंगे? क्यों?

  1. 727
  2. 158
  3. 269
  4. 1980

हल:

  1. ∴ संख्या 727 एक विषम संख्या है, अतः इस संख्या का वर्ग विषम संख्या होगी।
  2. ∴ संख्या 158 एक सम संख्या है, अतः इस संख्या का वर्ग सम संख्या होगी।
  3. ∴ संख्या 269 एक विषम संख्या है, अतः इस संख्या का वर्ग विषम संख्या होगी।
  4. ∴ संख्या 1980 एक सम संख्या है, अतः इस संख्या का वर्ग सम संख्या होगी।

प्रश्न 2.
निम्नलिखित संख्याओं के वर्ग में शून्यों की संख्या क्या होगी?

  1. 60
  2. 400

हल:

  1. संख्या 602 में दो शून्य होंगे।
  2. संख्या 4002 में चार शून्य होंगे।

पाठ्य-पुस्तक पृष्ठ संख्या # 100

प्रश्न 1.
क्या तुम कह सकते हो कि 62 और 72 के बीच कितनी संख्याएँ हैं?
हल:
हाँ, 62 और 72 के बीच में 2 x 6 = 12 संख्याएँ हैं, जो वर्ग संख्याएँ नहीं हैं।

प्रयास कीजिए (क्रमांक 6.6)

प्रश्न 1.
92 और 102 के बीच कितनी प्राकृत संख्याएँ हैं? 112 और 122 के बीच भी प्राकृत संख्याओं की संख्या बताइए।
हल:
92 और 102 के बीच प्राकृत संख्या = 2 x 9 = 18
अतः 92 और 102 के बीच 18 प्राकृत संख्याएँ हैं।
112 और 122 के बीच 2 x 11 = 22 प्राकृत संख्याएँ हैं।

प्रश्न 2.
निम्नलिखित संख्याओं के युग्मों के बीच की संख्या बताइए जो वर्ग संख्याएँ नहीं हैं –

  1. 1002 और 1012
  2. 902 और 912
  3. 1000 2 और 10012.

हल:

  1. 1002 और 1012 के बीच में 2 x 100 = 200 संख्याएँ हैं, जो पूर्ण वर्ग नहीं हैं।
  2. 902 और 912 के बीच में 2 x 90 = 180 संख्याएँ हैं, जो पूर्ण वर्ग नहीं हैं।
  3. 10002 और 10012 के बीच में 2 x 1000 = 2000 संख्याएँ हैं, जो पूर्ण वर्ग नहीं हैं।

पाठ्य-पुस्तक पृष्ठ संख्या # 101

प्रयास कीजिए (क्रमांक 6.7)

प्रश्न 1.
निम्नलिखित संख्याओं में प्रत्येक पूर्ण वर्ग । संख्याएँ हैं या नहीं?

  1. 121
  2. 55
  3. 81
  4. 49
  5. 69.

हल:
1. दी हुई संख्या 121 है। इसमें से क्रमागत 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 व 21 घटाने पर,

अर्थात् यहाँ 121 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21; 121 को 1 से प्रारम्भ करके सभी क्रमागत विषम प्राकृत संख्याओं के योग के रूप में लिख सकते हैं।
∴ 121 पूर्ण वर्ग संख्या है।

2. दी हुई संख्या 55 है। इसमें से क्रमागत 1, 3, 5, 7, 9, __11, 13 व 15 घटाने पर,

यह दर्शाता है कि हम 55 को 1 से प्रारम्भ करके सभी क्रमागत विषम प्राकृत संख्याओं के योग के रूप में नहीं लिख सकते हैं।
∴ 55 पूर्ण वर्ग संख्या नहीं है।

2. दी हुई संख्या 81 है। इसमें से क्रमागत 1, 3, 5, 7, 9, 11, 13, 15, 17 घटाने पर,

अर्थात् यहाँ 81 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17
∴ 81 को 1 से प्रारम्भ करके सभी क्रमागत विषम प्राकृत संख्याओं के योग के रूप में लिख सकते हैं। अतः 81 पूर्ण वर्ग संख्या है।

4. यहाँ दी हुई संख्या 49 है। इसमें से क्रमागत 1, 3, 5, 7,9, 11, 13 घटाने पर,

अर्थात् 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13
49 को 1 से प्रारम्भ करके सभी क्रमागत विषम प्राकृत संख्याओं के योग के रूप में लिख सकते हैं।
∴ 49 पूर्ण वर्ग संख्या है।

5. यहाँ, दी हुई संख्या = 69 है। इसमें से क्रमागत 1, 3, 5, 7, 9, 11, 13, 15, 17 घटाने पर,

यह दर्शाता है कि हम 69 को 1 से प्रारम्भ करके सभी क्रमागत विषम प्राकृत संख्याओं के योग के रूप में नहीं लिख सकते हैं।
∴ 69 पूर्ण वर्ग संख्या नहीं है।

प्रयास कीजिए (क्रमांक 6.8)

प्रश्न 1.
निम्नलिखित संख्याओं को दो क्रमागत पूर्णांकों के योग के रूप में लिखिए –

  1. 212
  2. 132
  3. 112
  4. 192.

हल:
हम किसी भी विषम संख्या के वर्ग को दो क्रमागत धनात्मक पूर्णांकों के योग के रूप में व्यक्त कर सकते हैं।

प्रश्न 2.
क्या आप सोचते हैं कि इसका विलोम सत्य है अर्थात् क्या दो क्रमागत धनात्मक पूर्णांकों का योग एक पूर्ण वर्ग होता है? अपने उत्तर के पक्ष में अपने एक उदाहरण दीजिए।
हल:
इसका विलोम सत्य नहीं हैं। दो क्रमागत धनात्मक पूर्णांकों का योग सदैव एक पूर्ण वर्ग नहीं होता है।
उदाहरणार्थ – 11 + 12 = 23.

पाठ्य-पुस्तक पृष्ठ संख्या # 102

वर्ग संख्याओं के कुछ और प्रतिरूप प्रयास कीजिए (क्रमांक 6.9)

प्रश्न 1.
उपरोक्त प्रतिरूप का उपयोग करते हुए वर्ग संख्याएँ लिखिए –

  1. 1111112
  2. 11111112.

हल:
दिए हुए प्रतिरूप का उपयोग करते हुए –

प्रयास कीजिए (क्रमांक 6.10)

प्रश्न 1.
उपर्युक्त प्रतिरूप का उपयोग करते हुए क्या आप निम्नलिखित संख्याओं के वर्ग ज्ञात कर सकते हैं?

  1. 66666672
  2. 666666672

हल:
प्रतिरूप

0:00
0:00

casibom-casibom-casibom-sweet bonanza-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir bahis siteleri-aviator-sweet bonanza-slot siteleri-slot siteleri-slot siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-bahis siteleri-casino siteleri-deneme bonusu-sweet bonanza-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-yeni slot siteleri-aviator-bahis siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-slot siteleri-lisanslı casino siteleri-yeni slot siteleri-casibom-grandpashabet-grandpashabet-