Rajasthan Board RBSE Class 10 Maths Chapter 9 निर्देशांक ज्यामिति Ex 9.1

प्रश्न 1.
दी गयी आकृति से बिन्दुओं P, Q, R व S के निर्देशांक ज्ञात कीजिए


हल:
P के निर्देशांक : (5, 3)
Q के निर्देशांक : (- 4, 6)
R के निर्देशांक : (- 3, – 2)
S के निर्देशांक : (1, – 5) उत्तर

प्रश्न 2.
निम्नलिखित निर्देशांकों वाले बिन्दुओं को आलेखित कीजिए-
(1, 2), (- 1, 3), (- 2, – 4), (3, – 2), (2, 0), (0, 3)
हल:
प्रश्न में अंकित बिन्दुओं को आलेखित करने के लिये XOX’ तथा YOY’ दो निर्देशांक और दिये गये बिन्दुओं A(1, 2), B(- 1, 3), C(-2, – 4), D(3, – 2), E(2, 0) तथा F(0, 3) को निर्देशांक अक्षों पर दर्शाते हैं।

प्रश्न 3.
आयतीय निर्देशांक अक्षों को लेते हुए बिन्दु O(0, 0), P(3, 0) और R(0, 4) को आलेखित कीजिए। यदि OPQR एक आयत हो, तो बिन्दु Q के निर्देशांक ज्ञात कीजिए।
हल:
XOX’ और YOY” दो परस्पर लम्बवत् रेखाएँ खींचीं जो बिन्दु O पर काटती हैं। इस पर O (0, 0), P (3, 0) और R (0, 4) को आलेखित किया।

∵ दी गई आकृति एक आयत है। ∴ बिन्दु Q के निर्देशांक (3,4) होंगे। उत्तर

प्रश्न 4.
बिन्दुओं (-1, 0), (1, 0), (1, 1), (0, 2), (- 1, 1) को आलेखित कीजिए और इन्हें क्रम से मिलाने पर कौन सी आकृति प्राप्त होती है?
हल:
उपर्युक्त बिन्दुओं से बनी आकृति निम्नलिखित है तथा बिन्दुओं को मिलाने पर वह पंजभुज प्राप्त होती है।

प्रश्न 5.
चतुर्भुज बनाइए, यदि उसके शीर्ष निम्नलिखित हों-
(i) (1, 1), (2, 4), (8, 4) और (10, 1)
(ii) (- 2, – 2), (- 4, 2), (- 6, – 2) और (- 4, – 6) प्रत्येक स्थिति में बने चतुर्भुज का प्रकार भी बताइये।
हल:
(i)

आकृति से स्पष्ट है कि भुजा PQ तथा QR परस्पर समान्तर हैं तथा भुजा PQ व RS असमान्तर हैं।
इस प्रकार यह चतुर्भुज एक समलम्ब चतुर्भुज है।

माना चतुर्भुज के शीर्ष P(- 2, – 2), Q(- 4, 2), R(- 6, – 2) तथा S(- 4, – 6) हैं।
उपरोक्त चित्र से स्पष्ट है–
PQ= QR = RS = SP
अतः दिया गया चतुर्भुज एक सम चतुर्भुज है।

प्रश्न 6.
निम्नलिखित बिन्दुओं के मध्य की दूरी ज्ञात कीजिए-
(i) (- 6, 7) और (-1, – 5)
(ii) (-1, – 1) और (8, – 2)
(iii) (at12, 2at1) और (at22, 2at2)
हल:
(i) (-6, 7) और (- 1, – 5)
माना बिन्दु (-6, 7) और (-1, -5) क्रमश: P व Q हैं, अतः इनके बीच की दूरी

(ii) (- 1, – 1) और (8, – 2)
माना बिन्दु (-1, – 1) और (8, – 2) क्रमश: P व Q हैं, अतः इनके बीच की दूरी
RBSE Solutions for Class 10 Maths Chapter 9 निर्देशांक ज्यामिति Ex 9.1 8

(iii) (at12, 2at1) और (at22, 2at2)
माना बिन्दु (at12, 2at1) और (at22, 2at2) क्रमश: P व Q हैं अतः इनके बीच की दूरी

प्रश्न 7.
सिद्ध कीजिए कि बिन्दु P(2, -2), Q(-2, 1) और R(5, 2) एक समकोण त्रिभुज के शीर्ष हैं।
हल:
माना बिन्दु P(2, – 2), Q(-2, 1) और R(5, 2) एक त्रिभुज के शीर्ष हैं।
∴ PQ2 = (- 2 – 2)2 + (1 + 2)2
= (- 4)2 + (3)2
= 16 + 9
= 25

QR2 = (5 + 2)2 + (2 – 1)2
= (7)2 + (1)2
= 49 + 1
= 50

RP2 = (2 – 5)2 + (-2 – 2)2
= (- 3)2 + (-4)2
= 9 + 16
= 25
∵ PQ2 + RP2 = QR2 = 25 + 25 = 50
अतः पाइथागोरस प्रमेय के विलोम से, दिये गये बिन्दु एक समकोण त्रिभुज के शीर्ष हैं। (इतिसिद्धम् )

प्रश्न 8.
सिद्ध कीजिए कि बिन्दु (1,-2), (3, 0), (1, 2) और (-1, 0) एक वर्ग के शीर्ष हैं।
हल:
माना कि दिए गए बिन्दु A(1, – 2), B(3, 0), C(1, 2) तथा D(-1, 0) हैं।


RBSE Solutions for Class 10 Maths Chapter 9 निर्देशांक ज्यामिति Ex 9.1 13
अत: चारों भुजायें AB, BC, CD तथा DA आपस में समान हैं तथा विकर्ण AC = विकण BD
अतः ABCD एक वर्ग हैं और दिये गये बिन्दु एक वर्ग के शीर्ष हैं। (इतिसिद्धम् )

प्रश्न 9.
सिद्ध कीजिए कि बिन्दु (a, a), (-a, -4) और  (-\sqrt{3} a, \sqrt{3} a)  एक समबाहु त्रिभुज के शीर्ष हैं।
हल:
माना कि दिए गए बिन्दु क्रमशः A(a, a), B(-a, -a) तथा C (-\sqrt{3} a, \sqrt{3} a)  हैं।

अतः दिये गये बिन्दु एक समबाहु त्रिभुज के शीर्ष हैं। ( इतिसिद्धम् )

प्रश्न 10.
सिद्ध कीजिए कि बिन्दु (1, 1), (-2, 7) और (3, -3) संरेख
हल:
माना दिए हुए बिन्दु A(1, 1), B(-2, 7) तथा C(3, – 3) हैं।
∴  \mathrm{AB}=\sqrt{(-2-1)^{2}+(7-1)^{2}}=\sqrt{9+36}

अत: दिए हुए बिन्दु एक ही सरल रेखा पर स्थित हैं। अर्थात् दिये गये तीनों बिन्दु संरेख हैं। ( इतिसिद्धम् )

प्रश्न 11.
x-अक्ष पर वह बिन्दु ज्ञात कीजिए जो बिन्दुओं (-2, – 5) और (2,- 3) से समान दूरी पर स्थित है।
हल:
माना वह बिन्दु P(x, 0) है जो x-अक्ष पर स्थित है तथा A(-2, -5) तथा B(2, – 3) से समान दूरी पर है।
∴ PA = PB या PA2 = PB2
⇒ (- 2 – x)2 + (-5 – 0)2 = (2 – x)2 + (- 3 – 0)2
⇒ 4 + x2 + 4x + 25 = 4 + x2 – 4x + 9
⇒ 4x + 25 = – 4x + 9
⇒ 4x + 4x = 9 – 25
⇒ 8x = – 16, ∴ x = – 2
∴ X-अक्ष पर वह बिन्दु (-2, 0) होगा। उत्तर

प्रश्न 12.
y-अक्ष पर वह बिन्दु ज्ञात कीजिए जो बिन्दुओं (-5, -2) और (3, 2) से समान दूरी पर स्थित है।
हल:
माना वह बिन्दु P(0, y) है जो y-अक्ष पर स्थित है तथा A(-5, – 2) व B(3, 2) से समान दूरी पर है।
अर्थात् PA = PB या PA2 = PB2
⇒ (-5 – 0)2 + (- 2 – y)2 = (3 – 0)2 + (2 – y)2
⇒ 25 + 4 + 4y + y = 9 + 4 – 4y + y2
⇒ 25 + 4y = 9 – 4y
⇒ 8y = 9 – 25
⇒ 8y = – 16
∴ y = – 2
∴ y-अक्ष पर वह बिन्दु (0, – 2) होगा। उत्तर

प्रश्न 13.
यदि बिन्दुओं (3, K) और (K, 5) से बिन्दु (0, 2) की दूरियाँ बराबर हों, तो K का मान ज्ञात कीजिए।
हल:
प्रश्नानुसार बिन्दु (3, K) और (0, 2) के बीच की दूरी = (K, 5) और (0, 2) के बीच की दूरी
(0 – 3)2 + (2 – K)2 = (0 – K)2 + (2 – 5) 2
⇒ 9 + 4 – 4K + K2 = K2 + 9
⇒ 4 – 4K = 0
⇒ – 4K = – 4
∴ K = 1 उत्तर

प्रश्न 14.
यदि P और Q के निर्देशांक क्रमशः (a cos θ, b sin θ) और (- a sin θ, b cos θ) हैं, तो सिद्ध कीजिए कि OP2+ OQ2 = a2 + b2, जहाँ 0 मूल बिन्दु है।
हल:
प्रश्नानुसार व्यवस्थित करने पर बिन्दु P Q तथा 0 के निर्देशांक क्रमशः निम्न प्रकार होंगे|
P(a cos θ, b sin θ), Q(- a sin θ, b cos θ) तथा O(0, 0)

प्रश्न 15.
यदि एक समबाहु त्रिभुज के दो शीर्ष (0, 0),  (3, \sqrt{3})  हों, तो तीसरा शीर्ष ज्ञात कीजिए।
हल:
यहाँ ∆ ABC एक समबाहु त्रिभुज है। माना इसका तीसरा शीर्ष C(x, y) है।
अब



0:00
0:00

tipobet-onwin-güvenilir casino siteleri-güvenilir casino siteleri-slot siteleri-yeni slot siteleri-sahabet-matadorbet-sweet bonanza-aviator-güvenilir casino siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler 2026-deneme bonusu veren yeni siteler-deneme bonusu-bahis siteleri-güvenilir bahis siteleri-aviator-slot siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-yeni slot siteleri-matadorbet-sahabet-yeni slot siteleri-deneme bonusu veren siteler 2026-matadorbet-bahis siteleri-tipobet-sahabet-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-onwin-onwin-tipobet-casino siteleri-sweet bonanza-slot siteleri-deneme bonusu-güvenilir bahis siteleri-sweet bonanza-aviator-casino siteleri-bahis siteleri-deneme bonusu veren siteler 2026-