Rajasthan Board RBSE Class 10 Maths Chapter 5 समान्तर श्रेढ़ी Ex 5.2

प्रश्न 1.
ज्ञात कीजिए-
(i) समान्तर श्रेढ़ी 2, 7, 12, …… का 10 वाँ पद
(ii) समान्तर श्रेढ़ी

\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, \dots . . का 18वाँ पद
(iii) समान्तर श्रेढ़ी 9, 13, 17, 21, ….. का 24 वाँ पद
हल:
(i) यहाँ a = 2, d = 7 – 2 = 5 और n = 10 हैं।
∵ an = a + (n – 1)d है।।
∴ a10 = 2 + (10 – 1) × 5
= 2 + 9 × 5 = 2 + 45 = 47
अतः दी हुई समान्तर श्रेढी (A.P) का 10वाँ पद 47 है। उत्तर

(ii) यहाँ a=\sqrt{2}, d=3 \sqrt{2}-\sqrt{2}=2 \sqrt{2} और n = 18
∵ an = a + (n – 1)d है।

अतः दी हुई समान्तर श्रेढ़ी (A.P) का 18वाँ पद 35 \sqrt{2} है। उत्तर

(iii) यहाँ a = 9, d = 13 – 9 = 4 और ॥ = 24
∵ an = a + (n – 1)d है।
∴ a24 = 9 + (24 – 1) × 4
= 9 + 23 × 4 = 9 + 92 = 101
अतः दी हुई समान्तर श्रेढी (AP) का 24वाँ पद 101 है। उत्तर

प्रश्न 2. हल कीजिए-
(i) समान्तर श्रेढ़ी 21, 18, 15, ….. का कौनसा पद – 81 है?
(ii) समान्तर श्रेढ़ी 84, 80, 76, ….. का कौनसा पद शून्य है?
(iii) क्या संख्याओं के अनुक्रम 5, 11, 17, 23, … का कोई पद 301 है?
(iv) क्या समान्तर श्रेढ़ी 11, 8, 5, 2 का एक पद – 150 है?
हल:
(i) यहाँ, 4 = 21, d= 18 – 21 = – 3 और an = – 81 है। हमें n ज्ञात करना है।
∵ an = a + (n – 1)d
या – 81 = 21 + (n – 1) × (-3)
या – 81 = 21 – 3n + 3
3n = 21 + 3 + 81 = 105
या n=\frac{105}{3}=35
इसलिए दी हुई समान्तर श्रेढी (A.P) का 35वाँ पद – 81 है। उत्तर

(ii) यहाँ, a = 84, d = 80 – 84 = – 4 और an = 0 (शून्य) है। हमें n ज्ञात करना है
∵ an = a + (n – 1)d
अतः 0 = 84 + (n – 1) × (- 4)
या 0 = 84 – 4n + 4
या 4n = 88
या n=\frac{88}{4}=22
इसलिए दी हुई समान्तर श्रेढी (A,P) का 22 वाँ पद शून्य है। उत्तर

(iii) हमें प्राप्त है- a2 – a1 = 11 – 5 = 6, a3 – a2 = 17 – 11 = 6, a4 – a3 = 23 – 17 = 6
चूँकि n = 1, 2, 3, आदि के लिए an+1 – an एकसमान संख्या होती है, इसलिए दी हुई सूची एक A.P. है।
यहाँ a = 5 और d = 6.
मान लीजिए इस A.P का वाँ पद 301 है।
हम जानते हैं कि an = a + (n – 1)d
इसलिए 301 = 5 + (n – 1) × 6
301 = 6n – 1
अतः n=\frac{302}{6}=\frac{151}{3}
परन्तु n एक धनात्मक पूर्णांक होना चाहिए अतः हम कह सकते हैं कि 301 संख्याओं की दी हुई सूची का पद नहीं है। उत्तर

(iv) यहाँ a2 – a1 = 8 – 11 = – 3
a3 – a2 = 5 – 8 = – 3
a4 – a3 = 2 – 5 = – 3
an+1 – an, n के सभी मानों के लिए समान है। अतः दी गई संख्याओं की सूची एक समान्तर श्रेढ़ी है। अब a = 11 और d = – 3
माना दी गई समान्तर श्रेढी का n वाँ पद – 150 है।

परन्तु n एक धनात्मक पूर्णांक होना चाहिए अतः हम कह सकते हैं कि – 150 संख्याओं की दी हुई सूची का पद नहीं है। उत्तर

प्रश्न 3.
यदि समान्तर श्रेढ़ी का छठा पद तथा 17वाँ पद क्रमशः 19 तथा 41 हैं, तो 40वाँ पद ज्ञात कीजिए।
हल:
दिया गया है
a6 = a + (6 – 1)d = a + 5d = 19 ……(1)
a17= a + (17 – 1)d = a + 16d = 41 …..(2)
समीकरण (1) में से (2) को घटाने पर
a + 5d – a – 16d= 19 – 41
⇒ – 11d= – 22
d=\frac{-22}{-11}=2
d का मान समीकरण (1) में रखने पर हमें प्राप्त होता है-
a + 5 × 2 = 19
⇒ a + 10 = 19 या a = 19 – 10 = 9
अतः a = 9 तथा d = 2 प्राप्त होता है।
इसलिए a40 = a + (40 – 1)d
= a + 39d …..(3)
समीकरण (3) में a तथा 4 के मान रखने पर
a40 = 9 + 39 × 2
= 9 + 78 = 87
अतः समान्तर श्रेढ़ी का 40वाँ पद 87 है। उत्तर

प्रश्न 4.
किसी समान्तर श्रेढ़ी के तीसरे और नौवें पद क्रमशः 4 और – 8 हैं, तो इसका कौनसा पद शुन्य होगा?
हल:
माना कि ‘a’ और ‘d’ क्रमशः दी गई A.P को प्रथम पद और सार्वअन्तर हैं।
दिया है कि-

d=\frac{-12}{6}=-2
d का यह मान (1) में प्रतिस्थापित करने पर
a + 2 (- 2) = 4
या a – 4 = 4
या a = 4 + 4 = 8
अब, an = 0 (दिया है)
a + (n – 1) d = 0
या 8 + (n – 1) (-2) = 0
या – 2 (n – 1) = – 8
या n – 1 = 4
या 4 + 1 = 5
अतः, A.P का 5वाँ पद शून्य है। उत्तर

प्रश्न 5.
किसी समान्तर श्रेढ़ी का तीसरा पद 16 है और 7वाँ पद 5वें पद से 12 अधिक है, तो समान्तर श्रेढ़ी ज्ञात कीजिए।
हल:
माना कि ‘a’ और ‘d’ दी गई A.P के प्रथम पद और सार्वअन्तर हैं।
दिया है कि
a3 = 16
a + (3 – 1) d = 16
a + 2d = 16 ….(1)
प्रश्नानुसार
a7 – a5 = 12
[a + (7 – 1) d] – [a + (5 – 1) d] = 12
a + 6d – 4 – 4d = 12
2d = 12
d=\frac{12}{2}=6
d का यह मान (1) में प्रतिस्थापित करने पर
a + 2 (6) = 16
a = 16 – 12 = 4
अतः दी गई A.P हैं-4, 10, 16, 22, 28, ….. उत्तर

प्रश्न 6.
तीन अंकों वाली कितनी संख्याएँ 7 से विभाज्य हैं ?
हल:
तीन अंकों की संख्याओं की सूची 100, 101, 102, … 994, 999 3 अंकों की 7 से विभाज्य प्रथम संख्या = 105
और अन्तिम संख्या = 994
7 से विभाज्य तीन अंकों वाली संख्याएँ-105, 112, 119, ….., 994 हैं।
यहाँ a = a1 = 105, a2 = 112, a3 = 119
और an = 994
a2 – a1 = 112 – 105 = 7
a3 – a2 = 119 – 112 = 7
∴ d = a2 – a1 = a3 – a2 = 7
दिया है कि
an = 994
a + (n – 1) d = 994
या 105 + (n – 1) 7 = 994
या (n – 1) 7 = 994 – 105
या (n – 1) 7 = 889
या n-1=\frac{889}{7}=127
या n = 127 + 1 = 128
अतः, तीन अंकों वाली 128 संख्याएँ 7 से विभाज्य हैं। उत्तर

प्रश्न 7.
समान्तर श्रेढ़ी 10, 7, 4, …..- 62 का अन्तिम पद से 11वाँ पद ज्ञात कीजिए।
हल:
यहाँ श्रेढ़ी का अन्तिम पद l = – 62 है।
प्रथम पद (a) = 10 एवं सार्वअन्तर (d) = 7 – 10 = – 3 है।
इस प्रकार अन्तिम पद से 11वाँ पद
= l – (11 – 1)d
= – 62 – 10 × (-3)
= – 62 + 30
= – 32
इस प्रकार अन्तिम पद से 11वाँ पद – 32 है। उत्तर

प्रश्न 8.
समान्तर श्रेढ़ी 1, 4, 7, 10, …. 88 में अन्त से 12वाँ पद ज्ञात कीजिए।
हल:
दी गई समान्तर श्रेढ़ी 1, 4, 7, 10, …….., 88
प्रथम पद (a) = 1
सार्वअन्तर (d) = 4 – 1 = 3
अन्तिम पद l = an = 88
सूत्र, अन्त से वाँ पद = l – (n – 1)d
अन्त से 12वाँ पद = 88 – (12 – 1) × 3
= 88 – 11 × 3
= 88 – 33 = 55
अतः समान्तर श्रेढ़ी के अन्तिम पद से 12वाँ पद 55 है। उत्तर।

प्रश्न 9.
एक समान्तर श्रेढ़ी में 60 पद हैं। यदि उसका प्रथम पद तथा अन्तिम पद क्रमशः 7 तथा 125 हैं, तो उसका 32वाँ पद ज्ञात कीजिए।
हल:
माना समान्तर श्रेढ़ी का पहला पद a तथा सार्वअन्तर d है।
अब an = a + (n – 1)d
∴ 125 = 7 + (60 – 1)d
या 125 = 7 + 59d
या 59d = 118
d=\frac{118}{59}=2
इसलिए a32 = 7 + (32 – 1) × 2
= 7 + 31 × 2
= 7 + 62 = 69
अतः समान्तर श्रेढ़ी का 32वाँ पद 69 है। उत्तर

प्रश्न 10.
चार संख्याएँ समान्तर श्रेढ़ी में हैं। यदि संख्याओं का योग 50 तथा सबसे बड़ी संख्या, सबसे छोटी संख्या की चार गुनी है, तो संख्याएँ ज्ञात कीजिए।
हल:
समान्तर श्रेढ़ी की चार संख्याएँ निम्न होंगी-
a – 3d, a – d, a + d, a + 3d
प्रश्नानुसार (प्रथम शर्त के अनुसार)
a – 3d + a – d + a + d + a + 3d = 50
⇒ 4a = 50
a=\frac{50}{4}=\frac{25}{2}
प्रश्नानुसार द्वितीय शर्त के अनुसार
(a + 3d) = 4(a – 3d)
⇒ a + 3d = 44 – 12d
⇒ 12d + 3d = 4a – a
⇒ 15d = 34
अतः d=\frac{3 a}{15}=\frac{1}{5} a
अत: a, का मान रखने पर
d=\frac{1}{5} \times \frac{25}{2}=\frac{5}{2}
अत: संख्याएँ होंगी-

= 5, 10, 15, 20 अतः समान्तर श्रेढ़ी की चार संख्याएँ 5, 10, 15 तथा 20 हैं। उत्तर

0:00
0:00

tipobet-onwin-güvenilir casino siteleri-güvenilir casino siteleri-slot siteleri-yeni slot siteleri-sahabet-matadorbet-sweet bonanza-aviator-güvenilir casino siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler 2026-deneme bonusu veren yeni siteler-deneme bonusu-bahis siteleri-güvenilir bahis siteleri-aviator-slot siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-yeni slot siteleri-matadorbet-sahabet-yeni slot siteleri-deneme bonusu veren siteler 2026-matadorbet-bahis siteleri-tipobet-sahabet-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-onwin-onwin-tipobet-casino siteleri-sweet bonanza-slot siteleri-deneme bonusu-güvenilir bahis siteleri-sweet bonanza-aviator-casino siteleri-bahis siteleri-deneme bonusu veren siteler 2026-